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Solar sails enable or enhance exploration of a variety of destinations both within and 

without the solar system.  The heliogyro solar sail architecture divides the sail into blades spun 

about a central hub and centrifugally stiffened.  The resulting structural mass savings can often 

double acceleration verses kite-type square sails of the same mass.  Pitching the blades collectively 

and cyclically, similar to a helicopter, creates attitude control moments and vectors thrust.  The 

principal hurdle preventing heliogyros’ implementation is the uncertainty in their dynamics.  This 

thesis investigates attitude, orbital and structural control using a combination of analytical studies 

and simulations.  Furthermore, it quantifies the heliogyro’s ability to create attitude control 

moments, change the thrust direction, and stably actuate blade pitch.  This provides engineers a 

toolbox from which to estimate the heliogyro’s performance and perform trades during preliminary 

mission design.  It is shown that heliogyros can create an attitude control moment in any direction 

from any orientation.  While their large angular momentum limits attitude slewing to only a few 

degrees per hour, cyclic blade pitching can slew the thrust vector within a few minutes.  This 

approach is only 13% less efficient than slewing a square sail during Earth escape, so it does not 

offset the overall acceleration benefits of heliogyros.  Lastly, a root pitch motor should be able to 

settle torsional disturbances within a few rotations and achieve thrust performance comparable to 

that of flat blades.  This work found no significant dynamic hurdles for heliogyros, and it provides 

key insight into their practical capabilities and limitations for future mission designers.
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NOMENCLATURE 

a semi-major axis [km] 

a* characteristic acceleration [mm/s2] 

av acceleration along the spacecraft velocity vector [mm/s2] 

A state-space system dynamics matrix 

As total sail area [m2] 

b̂x body frame axis (see Table 1.3) 

B state-space system control matrix 

ℬ denotes body frame (see Table 1.3) 

c blade chord [m] 

C state-space system observation matrix 

Cs coefficient of RCD specular reflectivity 

Cd coefficient of RCD diffuse reflectivity 

d̂x despun frame axis (see Table 1.2) 

D state-space system feed-through matrix 

𝒟 denotes despun frame (see Table 1.2) 

f true anomaly [deg, rad] 

fn nth rung Fourier integrand 

fRCD fraction of the blade area covered in RCD 

F net spacecraft solar radiation pressure (SRP) force vector [N] 

h sail membrane thickness [m] 

i blade number index 

I rigid-body spacecraft principal mass moment of inertia [kg⋅m2] 
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Jn nth rung mass moment of inertia [kg⋅m2] 

k harmonic number 

K stiffness or control gain [Nm/rad, Nms/rad] 

l̂ local horizontal with respect to the Sun and coplanar with v (see Table 1.1) 

ℒi denotes ith blade frame (see Table 1.4) 

m total spacecraft mass [kg, g] 

M net spacecraft SRP moment vector [Nm], subscript “d” indicates desired moments 

n finite element node/rung index (always subscripted) or orbit mean motion [rad/s] 

N number of finite elements 

Nb number of blades 

Nbat number of battens on each blade excluding blade tip 

p̂ reference axis for clock angle (see Table 1.1) 

P Solar radiation pressure [Pa] (P0 = 4.563e−6 Pa at 1 AU)56 

r orbit position vector [km] 

R heliogyro blade radius/span [m] 

s Sun-spacecraft vector, coincides with r in heliocentric orbits (see Table 1.1) 

𝒮 denotes Sun frame (see Table 1.1) 

t time [s] 

t∞ time to escape [d] 

Tn nth rung spanwise tension [N] 

u state-space system control input vector 

Un root-to-quarter-point transfer function 

Vn input-voltage-to-quarter-point transfer function 
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v laser Doppler vibrometer velocity output time history [μm/s] 

v orbit velocity vector [km/s] 

w controller bandwidth [rad/s] 

x spanwise position [m] 

X pitch and pitch rate state vector [rad, rad/s] 

y in-plane, chordwise position from centerline [m] 

Y state-space system output vector [rad, rad/s] 

z out-of-plane position [m] 

αxx profile amplitude [rad, deg], subscript “co” = collective, “hp” = half-p, “cy” = cyclic 

αn linear model amplitude coefficient for the nth rung [rad] 

α vector of linear model amplitude coefficients [rad] 

αn
(k) cosine coefficient of the kth harmonic for the nth rung [rad] 

βn
(k) sine coefficient of the kth harmonic for the nth rung [rad] 

γ sail cone angle/Sun angle, angle between s and d̂1 [rad, deg] 

γ* Sun angle for maximum lateral thrust, γ* = sin-1(√3/3) = 35° (Ref. 56) 

δ  clock angle between p̂ and d̂3 [rad, deg] 

ϵ  escape factor 

ζ  damping ratio 

η  optical efficiency 
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ρ sail membrane density [kg/m3] 

σs sail system loading [g/m2] 

σn nth rung spanwise stress [Pa] 

τ torque about the blade twist axis [Nm] 

υn nth rung vertical membrane deflection angle [rad] 

ϕ harmonic phase angle [rad] 

ϕxx half-p (xx = hp) or cyclic (xx = cy) phase angle [rad, deg] 

χi ith blade angle relative to blade 1 in the rotation plane, χ1 = 0 [rad, deg] 
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CHAPTER 1. INTRODUCTION 

A. Motivation for Solar Sailing 

Mankind has been successfully exploring the solar system for over half a century almost 

exclusively with chemical propulsion and, in a handful of cases, with electric propulsion.  The 

principal limitation of both these systems is their finite propellant supply, which caps the amount 

of energy they are able to impart to change a spacecraft’s orbit.  There are many conceivable 

missions both within the solar system and to interstellar destinations that are either impractical or 

impossible using chemical or electric propulsion.  Solar sails offer an alternative approach with 

the promise to greatly enhance our ability to explore, understand, and ultimately expand into space 

beyond the limitations of traditional propulsion. 

Solar sails use the direct momentum transfer of solar photons to generate thrust, thus they 

have an unlimited supply of propellant.  Large reflective membranes are deployed and oriented to 

direct thrust in the desired direction.  To a first order approximation, the thrust vector is normal to 

the reflective surface.  Their chief limitation is the tiny solar radiation pressure (SRP) available, 

only 4.56 μPa at 1 AU.56  Therefore, the solar sail must either be extraordinarily large to achieve 

higher thrust or the mission must be extraordinarily long to allow time for the solar sail to impart 

the required energy.  Ref. 50 gives an overview of mission concepts that are enabled or enhanced 

by solar sails, divided into two categories.  The first are high-energy destinations such as Solar 

Polar Orbiter (SPO) that achieves a high heliocentric inclination to image the solar poles or 

destinations in the Kuiper Belt, Oort Cloud, or interstellar space.  The second mission type uses 

the continuous thrust solar sails provide to maintain novel orbits often called “non-Keplerian”.  

Some example missions are Geostorm (displace the Earth-Sun L1 point sunward for increased 

solar storm warning time), GeoSail (continuously rotate the argument of perigee of a highly 
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elliptical orbit to maintain apogee in the Earth’s magnetic tail), and Polesitter (hover above one of 

the Earth’s poles for continuous communication or remote sensing coverage). 

B. Solar Sail Architectures and History 

Solar sail architectures have traditionally fallen into three categories, examples of which 

are shown in Figure 1.1.  The first and most studied architecture is square with two cross booms I 

call “kite sail”.  Notable recent examples include two 20-meter ground demonstration test articles 

developed for the NASA In-Space Propulsion Technology Program, ca. 2005.40  One of these 

designs, shown in Figure 1.1a, was further developed into the Sunjammer concept.4,5  Additionally, 

several nanosatellite CubeSat examples exist including NASA Marshall Space Flight Center’s 

(MSFC) NanoSail-D,3,41 the German Space Agency’s (DLR) Gossamer program,25 the Planetary 

Society’s LightSail-1,6,15,39 and the Surry Space Centre’s CubeSail.46  The principal advantage of 

kite sail designs is that deployment of their primary sail-supporting structures is rigid enough to 

ground test prior to space flight.  This is a huge risk-mitigation factor for early solar sails.  As a 

square sail’s area grows, the mass of supporting structure—generally deployable booms or 

trusses—begins to dominate the overall mass of the sail system, and it becomes increasingly 

difficult to prevent buckling.  This is the chief drawback of the kite sail architecture.  An additional 

complicating factor is acreage management of the very large and delicate sail membranes.  

Manufacture, ground handling, packaging, and deployment of expansive sail membranes only a 

few microns thick are extremely delicate and risky operations. 

Another solar sail architecture is the spinning disk sail.  The disk sail deploys and flattens 

the membrane with centrifugal forces alone, eliminating the massive booms of kite-type sails.  This 

makes the disk sail, in principal, the most efficient and lightest solar sail.  Chief disadvantages are 

the same deployment and packaging issues associated with kite sails and the difficulty of attitude 
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control; however, this architecture is the only controlled solar sail spaceflight example to date.  

The Japan Aerospace Exploration Agency (JAXA) IKAROS solar sail, launched in 2010 and 

shown in Figure 1.1b, successfully demonstrated an innovative spinning membrane control 

approach using thin film liquid crystal devices (LCDs) integrated into the perimeter of the sail 

membrane.  These LCDs switch the local reflectivity between diffuse and specular states, changing 

the resulting solar radiation pressure acting on those portions of the sail.  Synchronizing switching 

of the LCDs with the sail spin rate can generate inertially-fixed torques for two-axis attitude 

control.24  While a completely successful demonstration, IKAROS’ net acceleration is orders of 

magnitude below that necessary for solar-sail science applications (shown later). 

 
a) L’Garde 20 m ground 

demonstrator (2005)40 

b) JAXA 14.7 m IKAROS in 

flight (2010)64  

c) JPL 17 km heliogyro concept 

(1978)54 

Figure 1.1:  Example solar sail architectures 

The third “canonical” solar sail architecture is the heliogyro, first proposed by Richard 

MacNeal in 1967.51  The heliogyro is a helicopter-like, spinning solar sail that divides the 

membrane into several very high aspect ratio blades spun about a central hub.  Changing the blade 

pitch collectively (all blades at a constant pitch) and cyclically (sinusoidally with blade azimuth in 

the rotation plane), controls the attitude and thrust vector.  The blades stow compactly on spools 

and then slowly unrolled during deployment, aided by centrifugal forces.  This simple deployment 

and packaging concept straightforwardly scales to extremely large sail areas.  Heliogyros possess 
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the primary advantage of the spinning disk sail, namely low areal density, while avoiding many of 

the difficulties associated with stowage and deployment of large membrane areas. 

Despite these compelling benefits, few heliogyro designs exist in literature.  NASA Jet 

Propulsion Laboratory (JPL) conducted the most in-depth heliogyro study to date in the 1970s for 

an ambitious Comet Halley rendezvous mission.21,22,37,54,62  Their final design featured a dozen 

blades, each 8 m by 7500 m, in two tiers as shown in Figure 1.1c.  Ultimately, NASA selected a 

solar electric propulsion approach over the heliogyro, due primarily to the perceived high risk 

associated with unproven solar sail technology.21  NASA eventually canceled the entire Halley 

mission due to cost overruns.56  Later, a MIT design team conducted a study in 1989 as an entry 

into a solar sail race to Mars for the Columbus Quincentenary Commission.7  One of the original 

MIT design team members subsequently performed further heliogyro blade control and dynamics 

investigations.8,9  More recently, CU Aerospace and the University of Illinois studied an extremely 

large heliogyro concept starting in 2003 that they dubbed Ultrasail.12,13  They worked on a CubeSat 

demonstration mission to deploy a 250 m long strip of sail material between two CubeSats and 

investigate the dynamics of a single heliogyro blade.14 

C. Coordinate Reference Frames 

Heliogyros are complex mechanical systems with many moving parts rotating and 

deforming with respect to each other, so I use several coordinate frames herein.  First, the Sun 

frame 𝒮 first axis is the Sun-spacecraft vector s, and the spacecraft orbital velocity vector v anchors 

the frame’s rotation about this axis.  This is done by restricting the second axis, the local horizontal 

with respect to the sun l̂, to lie in the orbit plane and in the same semicircle as v.  In a circular, 

heliocentric orbit, l̂ is coincident with v, but this more general definition holds in eccentric and 

planet-centric orbits.  The vector p̂ completes the right handed coordinate system.  In heliocentric 
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orbits, p̂ is coincident with the orbit angular momentum.  This frame is summarized in Table 1.1, 

and it can be considered inertial on the time scales of structural and attitude dynamics analysis. 

Table 1.1:  Sun coordinate frame 𝒮:  {ŝ, l̂, p̂} 

ŝ Sun-spacecraft unit vector, coincides with r in heliocentric orbits 

𝒍̂  local horizontal with respect to the Sun in the orbit plane and same semicircle as v 

p̂ = ŝ × l̂  completes right-handed system, reference axis for clock angle δ 

 

Next is the despun frame 𝒟, defined by a two angle rotation from the Sun frame shown in 

Figure 1.2.  For consistency in these and all subsequent heliogyro visualizations herein, the 

Sunlight is incident at a 45° angle from the left and the viewer is 15° above the d̂1d̂2 plane.  From 

initial alignment (Figure 1.2a), rotate the despun frame by a clock angle δ about d̂1 (Figure 1.2b) 

followed by a cone angle γ rotation about d̂3 away from the Sun vector (Figure 1.2c).  The cone 

angle is the angle between s and d̂1, and the clock angle is between p̂ and d̂3.  These definitions are 

such that a positive γ with δ = 0 produces a thrust component along +l̂ and +v, thereby increasing 

orbit energy.  A positive γ with δ = 90° produces a thrust component along +p̂, which could crank 

the inclination or line of nodes in a heliocentric orbit.  These are both examples of utilizing a SRP 

force perpendicular to the Sun line that I call lateral thrust.  Lateral thrust is maximized at a cone 

angle γ* = sin-1(√3/3) = 35° in flat sails with perfect reflection.56 

Clock angle does not affect the net SRP thrust F and attitude control torque M in the despun 

frame since this angle is part of the rotation from Sun to despun frames.  It does, however, set the 

direction of the attitude-dependent portion of lateral thrust in the Sun frame.  The cyclic profile 

also produces lateral thrust, but its direction is set by the cyclic phase (explained in Chapter 1.D). 



www.manaraa.com

6 

    

 a) γ = 0° and δ = 0° b) γ = 0° and δ = 45° c) γ = 35° and δ = 45° 

Figure 1.2:  Despun and Sun coordinate frame rotations 

The despun frame, described in Table 1.2, is similar to the spacecraft body frame, except 

the body frame rotates about d̂1 at the nominal spin rate Ω.  The second despun axis d̂2 is defined 

through the rotation described above and is the reference axis for measuring first blade azimuth 

ψ1.  All heliogyro illustrations herein freeze rotation at ψ1 = 0 (i.e. the first blade is aligned with 

d̂2); however, the choice of blade to label “first” is arbitrary due to spacecraft symmetry.  The 

despun frame is useful because the F and M of a given pitch profile are constant in this frame 

when averaged over the pitch profile period.  This allows the despun frame results to be plugged 

into solar sail trajectory analyses in the literature, most of which assume an ideal, flat plate with 

perfect reflection.  I call this the “flat sail”, which could take any shape (e.g. square, disk, etc.).  

An idealized kite sail, the most commonly studied architecture, is a subset of flat sails. 

Table 1.2:  Despun coordinate frame 𝒟:  {d̂1, d̂2, d̂3} 

d̂1  primary spin axis, reference axis for cone angle γ 

d̂2  ⊥ d̂1, coplanar with s, reference axis for first blade azimuth ψ1 

d̂3 = d̂1 × d̂2 completes right hand system, reference axis for clock angle δ 

Next is the body coordinate frame ℬ described in Table 1.3, which relates to the despun 

frame by the first blade’s azimuth angle ψ1. 

δ  

γ  

δ  
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Table 1.3:  Body coordinate frame ℬ:  {b̂1, b̂2, b̂3} 

b̂1  axis to blade 1 mid-chord at the root 

b̂2 = b̂3 × b̂1 completes right-handed system 

b̂3  major body axis assumed coincident with d̂1 

The last frame is the ith blade frame ℒi described in Table 1.4, representing the flat or 

undeformed blade position.  This relates to the body frame by a rotation about the spin axis from 

the first blade to the ith blade χi, and a rotation about that blade’s long axis equal to the blade pitch 

at the root θi.  This is the frame used for blade dynamics analyses and for calculation of the SRP 

force for attitude control investigations. 

Table 1.4:  Flat ith blade coordinate frame ℒi:  {x̂, ŷ, ẑ} 

x̂  axis along blade span 

ŷ axis along blade chord 

ẑ  blade normal, coincident with d̂1 and b̂3 when θi = 0 

The direction cosine matrices (DCMs) between frames combine the following single-axis 

rotation matrices: 

 
ROT1(𝜃) = [

1 0 0
0 cos 𝜃 sin 𝜃
0 −sin 𝜃 cos 𝜃

] (1.1) 

 
ROT2(𝜃) = [

cos 𝜃 0 −sin 𝜃
0 1 0
sin 𝜃 0 cos 𝜃

] (1.2) 

 
ROT3(𝜃) = [

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0
0 0 1

] (1.3) 

where θ represents the given angle and not blade pitch as used elsewhere.  DCMs here use the 

notation Ax = [AB] Bx where: 

 [𝒟𝒮] = ROT3(𝛾)ROT1(𝛿) (1.4) 
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 [ℬ𝒟] = ROT3(𝜓1)ROT1 (
𝜋

2
)ROT3 (

𝜋

2
) (1.5) 

 [ℒ𝑖ℬ] = ROT1(𝜃𝑖)ROT3(𝜒𝑖) (1.6) 

Note that [ℬ𝒟] is a single rotation of the first blade’s azimuth angle.  The two constant, π/2 

rotations merely renumber the axes to get b̂3 coincident with d̂1.  This is an axis numbering choice 

to reconcile coordinate systems used in disparate papers and has no physical effect. 

D. Heliogyro Blade Pitch Profiles for Attitude and Thrust Control 

Conventional spacecraft attitude actuators such as reaction wheels, thrusters, or 

magnetorquers are generally considered impractical on solar sails due to the sail’s large mass 

moment of inertia, excessive propellant use (given a sail’s typically long mission life), or the lack 

of strong magnetic fields in typical solar sail orbits.  Therefore, solar sails preferentially use SRP 

for attitude control, sometimes supplemented by conventional means.  They do this by offsetting 

the center of pressure (CP) from the center of mass (CM).  Methods that shift the CM around the 

CP include a mass on a moveable boom46,47,6568  or masses sliding along the sail deployment 

booms.1,2,47,60  Alternatively, the CP is shifted relative to the CM, such as with moveable 

vanes,1,2,5,47,65,66 membrane twisting/warping and translating,47,65,66 membrane billowing,23 and 

changing the local reflectivity.11,24,58  These methods are limited in their ability to generate SRP 

attitude control moments—referred to herein as control moment authority (CMA)—because they 

affect a small portion of the sail’s total mass or area and/or have a limited range of motion. 

The heliogyro takes the concept of control vanes to its extreme; the entire sail is divided 

into moveable vanes.  This gives the heliogyro a large CMA; however, spinning solar sails in 

general and heliogyros in particular have a very large angular momentum.  On one hand, this 

makes them resistant to disturbance torques, but it also makes attitude maneuvers slow and 
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difficult.  Additionally, a spinning sail’s attitude control system must actuate at the spin rate in 

order to keep the control moment fixed in inertial space.  IKAROS used liquid crystal devices 

(LCDs) that switched on and off instantly,24 but a heliogyro will need mechanisms capable of 

continuously varying the blade pitch at rotation rates. 

The father of the heliogyro, Richard MacNeal, suggested three blade pitch profiles for 

control in all six degrees of freedom: collective (blades at a constant pitch), cyclic (blades pitch 

sinusoidally once per revolution), and half-p (blades pitch sinusoidally once every two 

revolutions).51,54  Figure 1.3 summarizes the effects of each of the three pitch profiles for the 

nominal, Sun-facing case (γ = 0).  The first row in Figure 1.3 is a visualization of a four-blade 

heliogyro showing the direction of positive spin rate Ω, incident Sunlight direction, and force and 

moment vector components.  Each blade’s pitch (relative to the blade rotation plane) and the 

coordinate frame axes are also annotated. 

Each profile is shown at the pitch amplitude yielding the largest force or moment in the 

useful direction per the “effect” row, assuming flat blades and perfect reflection.  Collective yields 

the largest spin moment (M1) at 35° blade pitch, as this angle has the largest lateral thrust on each 

individual blade.  The half-p profile yields the largest in-plane moment (M2 or M3) at 75° pitch 

amplitude, as this amplitude balances the two competing goals for maximizing M2:  blade pitch 

should be close to zero above d2 (top half of the cycle) and close to ±90° below d2 (bottom half of 

the cycle).  Cyclic yields the largest lateral thrust (Fl or Fp) at 42° pitch amplitude, as this amplitude 

balances the two competing goals for maximizing Fl:  blade pitch should be close to +35° above l 

(top half of the cycle) and close to −35° below l (bottom half of the cycle).  In this Sun-facing case, 

note that the cyclic profile (Figure 1.3c) produces no net attitude control moment but does generate 
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thrust in the sail’s rotation plane, a capability absent from most other sail architectures.  As will be 

shown later, however, the cyclic profile can generate useful control moments in other situations. 

*The half-p profile period is two revolutions.  Dashed lines indicate the blade position for the second revolution. 

Figure 1.3:  Heliogyro blade pitch profile descriptions for the Sun-facing case 

It should be noted that these pitch profiles are not necessarily the best ways to achieve the 

desired force and moment effects.  In infinitely stiff blades, the ideal pitch profile would step 

change between the competing goals listed in the previous paragraph.  In reality, the blades have 

very little stiffness, so a sinusoidal oscillation is used to minimize excitation of structural modes.  

Waveforms somewhere between step functions and single-frequency sinusoids may be more 

efficient, even with flexible blades, a possibility I consider in Chapter 4.E.3. 

E. Typical Solar Sail Operations 

This dissertation is intended to be generally applicable, but it is important it be relevant to 

common solar sail missions and near-term heliogyro designs.  Many solar sail missions share 
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operational modes such as maintaining cone angles of 0° or 35° for long periods, as these 

orientations beget the largest SRP thrust away from and perpendicular to the Sun line, respectively.  

I have selected several modes that appear frequently for near-term missions to test my algorithms 

and strategies.  Table 1.5 describes several solar sail operational modes covering the most common 

missions (see Ref. 56 Ch. 6 and Ref. 50 for more detail). 

Table 1.5:  Typical solar sail mission operational modes 

# Mode Goal 

Cone 

Angle 

Component  

to Maximize 

1* Sail deployment Increase angular momentum to maintain 

spin rate as moment of inertia grows 

0° M1 

2 Earth-Sun Sub-

L1 halo orbit 

Displace Earth-Sun L1 point Sunward 

for increased solar storm warning time 

0° Fs 

3 Planetary 

spiral in/out 

Increase/decrease orbit energy 0° † F • v 

4 Heliocentric 

spiral in/out 

Increase/decrease orbit energy ±35° ±Fl 

5a Heliocentric 

cranking (coast) 

Change the orbit inclination ±35° ±Fp 

5b Heliocentric 

cranking (slew) 

Rapidly slew the spacecraft 70° twice 

per orbit at the orbit nodes 

±35° to 

∓35° 

±M2 

6 Emergency 

attitude recovery 

Recover from undesirably high cone 

angles 

up to 

±90° 
∓M2 

*Specific to spinning solar sails. 
†Specific to heliogyros, which can slew the thrust with cyclic.  Flat sails would slew 180° per orbit.56 

 

These operational modes apply to solar sails generally, except as noted.  The planetary 

spiral in/out (mode 3) requires that the solar sail thrust vector be slewed at orbit rates to maximize 

thrust along the velocity vector.  The heliogyro’s large angular momentum makes it inefficient to 

vector the thrust by spin axis precession in this mode, as much of the solar thrust is taken by 

precession moments.  Instead, the thrust vector would typically be slewed using cyclic profiles 

with the heliogyro facing the Sun throughout, which is the topic of Chapter 3.  Changes in cone 

angle require a ±M2 moment in the despun frame.  Smaller ±M3 moments will also be needed to 

reject attitude disturbances and change the clock angle, but these do not drive the selection of the 



www.manaraa.com

12 

blade pitch profile used in each mode.  The pitch profile selection to achieve a desired attitude 

control moment is covered in Chapter 2.  The list in Table 1.5 is not all-inclusive, and the 

approaches developed here would apply to other operational modes. 

F. Research Questions and Expected Contributions 

Before even a small heliogyro demonstrator could be undertaken, a deeper understanding 

of its dynamics will be needed.  Blade pitch control is directly responsible for attitude control, 

which controls the heliogyro’s trajectory.  All of these problems are interrelated, so a study of one 

is incomplete without the other two.  This work uses a combination of analytical and computational 

investigation to understand the heliogyro’s ability to provide both attitude control and main 

propulsion.  Throughout, I have striven to ground my research in realistic scenarios and to simplify 

the control algorithms’ implementation, so that the tactics, strategies, and laws can be readily 

tailored to future missions.  This work also provides key insight for future mission designers into 

the heliogyro’s practical capabilities and limitations, hopefully facilitating a demonstration 

mission like the HELIOS concept of Chapter 1.G in the near future.  In particular, this thesis 

addresses three essential questions about heliogyro dynamics and control: 

1. How can one achieve a desired attitude and thrust with blade pitch profiles? 

While there is a large body of work discussing attitude control of square- and disk-type 

solar sails, very little work on heliogyro attitude control has been done to date.  The most 

applicable, non-heliogyro work uses tip vanes; however, these three-axis stabilized, so they avoid 

the heliogyro’s complications of constant rotation and actuation.  All work discussing heliogyro 

attitude control13,36,51,52,54 is limited to Sun-facing and considers a single force or moment 

component rather than evolution of the whole force and moment vectors with changing attitude.  

Furthermore, the only combination pitch profile mentioned is collective plus cyclic,51,52,54 and its 
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use is not explored in any detail.  Unfortunately, undesirable force and moment components arise 

for non-zero cone angles, making it difficult to inertially fix the force and moment vectors with a 

change in attitude.  Furthermore, attitude control via spin axis precession (M2 and M3) will be 

required throughout the mission to counter various disturbance torques. 

These factors necessitate combination pitch profiles, and motivate the investigation 

of Chapter 2 into the heliogyro’s ability to maintain attitude control at all orientations in all 

operational modes.  This chapter investigates the answers to: 

a) How do the forces and moments created by the pitch profiles of Figure 1.3 vary with attitude 

and can one combine pitch profiles to compensate for these changes? 

b) Is it possible to meet multiple goals simultaneously, such as spin-up, lateral thrusting, spin axis 

precession, and disturbance torque rejection? 

c) What combination pitch profile is optimal for each operational mode of Table 1.5, for example, 

to generate the most lateral thrust or slew the attitude the fastest? 

d) How does the pitch profile map to the attitude control moment, what factors dominate this 

mapping, and is it possible to invert the mapping and determine the pitch profile required to 

meet a desired attitude control moment? 

The CMA sets the upper bound on the heliogyro’s ability to generate attitude control 

torques to change its attitude and spin rate.  Chapter 2 presents a comprehensive understanding of 

how CMA varies with cone angle and desired forces, yielding quantitative trade-offs useful for 

determining the heliogyro’s ability to counter disturbance torques and what trajectories it can 

follow.  Within, I define and analyze three distinct attitude control tactics, each of which combines 

two pitch profiles.  These tactics optimize the pitch profile to achieve three distinct attitude control 

goals:  Spin Control, Precession, and Lateral Thrust.  Taken together, they cover all the operational 
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modes of Table 1.5, providing quantitative constraints on heliogyro performance for mission 

design and simulation.  I normalize these results to eliminate dependence on heliogyro dimensions 

or distance from the sun.  This chapter helps mission designers determine if the heliogyro would 

even work for a given mission and whether or not it is an enabling architecture.  Furthermore, these 

results inform blade controller design by indicating what the expected pitch amplitudes and pitch 

rates would be, and they inform blade construction by demonstrating the benefits of being able to 

illuminate both sides of the blade. 

2. How does the heliogyro compare to a flat sail for Earth escape? 

Solar sail trajectory studies almost exclusively assume a flat sail with a given characteristic 

acceleration and perfect reflection, such as Refs. 10, 16-19, 28, 47-50, 56, and many others.  

Attitude changes are usually assumed to be instantaneous, and in no case is there any relationship 

between thrust and slew rate.  This is generally reasonable in heliocentric orbits with periods of 

many months; however, attitude control must be considered in planet-centric orbits.  The 

maximum slew rates of the heliogyro are often slower than orbit rates, and there is a reduction in 

available thrust proportional to the desired slew rate.  Fortunately, the heliogyro has an alternative, 

unique method of changing the thrust direction with cyclic profiles without having to slew. 

Chapter 3 addresses the planet-centric trajectory most relevant to near-term heliogyro 

missions:  Earth escape.  Early technology demonstration missions like HELIOS will likely launch 

as a secondary payload for cost reasons, and ride-share opportunities to interplanetary space are 

scarce.  Unfortunately, planet-centric orbit is the most difficult regime for solar sails to operate.  

Compared with heliocentric orbit, Earth orbit has much higher orbit rates, faster attitude control 

maneuvering, eclipsing, and a constantly changing incident sunlight vector relative to the orbit 

frame.  Therefore, CHAPTER 3 will focus on this most difficult regime by comparing various 
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strategies for adding orbital energy with a heliogyro, in particular, the comparison between 

traditional solar sail strategies that slew the spacecraft, and heliogyro-specific strategies using 

cyclic profiles.  This chapter addresses the pertinent questions of: 

a) What is the optimal strategy to escape Earth orbit for a heliogyro? 

b) Can the heliogyro slew fast enough to follow the prescribed trajectories?  

c) How do strategies that slew the spacecraft compare to the non-slewing strategies when 

accounting for the performance penalty required to create attitude torques for slewing? 

d) Is the heliogyro architecture preferred over a flat sail, considering the performance gain from 

less structural mass and the performance penalty of using cyclic profiles? 

Chapter 3 confirms results with analytical performance metrics and orbital dynamics 

simulations.  McInnes develops a non-dimensional quantity that I call the “escape factor” for use 

in comparing his strategies.56  Chapter 3 develops new formulations of the escape factor and 

applies it to heliogyro-specific strategies for direct comparison with generalized, flat sail strategies 

to determine which is the better architecture for this application.  I also present a new heliogyro 

escape strategy with locally optimal control of the cyclic pitch profile.  Lastly, I derive a method 

of measuring the escape factor directly from simulation results for analytical validation, and I 

perform that validation with orbital simulations. 

3. How can one control the pitch of highly flexible blades, ensuring stability? 

The primary concern with heliogyros is the uncertainty associated with structural dynamics 

of controlling blade twist,56 so I spent the most time on this topic.  Heliogyro blades have three 

degrees of freedom (DOF) each:  flap bending out the plane of rotation, lead-lag bending in the 

plane of rotation, and twist deformation about the radial axis.  The centrifugal stiffening should 

effectively confine the flap and lead-lag bending to a couple degrees over the whole blade length,53 
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but twist dynamics pose a legitimate concern.  Material stiffness and damping in twist are very 

small, so active control and damping of blade pitch appears to be required.  As used herein, pitch 

is the local angle between the heliogyro blade and the plane of rotation, and twist is the local angle 

between the blade and the blade root (the undeformed, flat blade state). 

Past work on blade twist stability has been limited to the linearized 

dynamics,7,8,9,12,20,26,27,29-31,38,44,53 but nonlinear effects can substantially alter the torsional 

dynamics, even at moderate excitation amplitudes.34  Chapter 4 develops a finite element model 

(FEM) for blade twist to investigate these issues, and it addresses the following questions: 

a) Is control at the blade root sufficient?  What form should a root control law take? 

b) What is the steady-state blade shape for an arbitrary root pitch profile?  In other words, what 

is the system’s response to root excitation? 

c) Does the nonlinear system experience frequency coupling, and at what frequencies? 

d) How can one ensure adequate twist stability in the closed loop linear system?  This is a 

necessary but not a sufficient condition for nonlinear stability. 

e) Since material damping is presumed to be small, what is the relationship between material 

damping available and required controller bandwidth for stability? 

f) How can one enhance blade stiffness for greater stability margin in a mass-efficient way? 

g) Is it reasonable to assume flat blades and instantaneous changes in blade pitch profile for 

attitude and trajectory analyses? 

h) If control at the blade root alone proves insufficient, what are some possible blade tip actuators?  

What would their performance and stability be? 

Chapter 4 presents a control law for root pitch, analyzes the stability of the linearized 

system, adapts the control law for the nonlinear system, and examines some nonlinear stability 
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issues and their mitigation measures.  It also covers some structural dynamics experiments 

performed in a vacuum chamber that give confidence that my FEM is reasonably representing the 

blade dynamics and to measure the structural damping.  Lastly, Chapter 4 briefly introduces some 

additional control system concepts for the blade tip that are effective but do not appear necessary 

or practical at this time.  I intend to show that there are no insurmountable structural dynamics 

issues with controlling blade twist from the root, and that this approach is feasible.  The blade 

dynamics investigations also inform decisions about blade construction, and root motor and 

mechanism design.  They give insight into methods of increasing blade stiffness and material 

damping.  Furthermore, understanding the effects of small material damping is critical to controller 

design, as it drives the control system bandwidth requirement. 

G. Heliogyro Design Concept Performance Comparison to Other Sail Designs 

The uncertainty in heliogyro dynamics begs the question, “What are the potential benefits 

of heliogyros relative to other solar sails?”  One can begin to answer that question by substituting 

a heliogyro into various other, well-developed solar sail concepts and estimating the performance 

enhancement.  By “well-developed,” I mean that the concept has a sufficiently detailed sail system 

mass budget in the literature to allow for substitution of a heliogyro.  Many papers on solar sail 

trajectories use an arbitrarily low sail loading σs (the ratio of sail system mass to area) not based 

on any rigorous mass budget.  While it is invalid simply to “plug in” a heliogyro to such scenarios, 

the heliogyro is an excellent way to achieve their ambitious sail loading. 

For comparison with other architectures, I use the concept under joint development at 

NASA Langley Research Center (LaRC), JPL, MSFC, the University of Colorado, and Duke 

University.  This mission is dubbed HELIOS, for High-Performance, Enabling, Low-Cost, 

Innovative, Operational Solar Sail.71-74  HELIOS would be a small-scale technology demonstrator, 
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and it is designed to fit within the Evolved Expendable Launch Vehicle (EELV) Secondary 

Payload Adapter (ESPA).  Where physical parameters are necessary in my analysis, I use the 

baseline HELIOS-like parameters listed in Table 1.6.  For comparison, Table 1.6 also lists the 

parameters from the original, somewhat more ambitious, JPL Halley’s Comet Rendezvous.  

Figure 1.4 illustrates the HELIOS deployment sequence, typical of heliogyros. 

Table 1.6:  Heliogyro reference parameters 

Parameter HELIOS74 

Halley’s Comet 

Rendezvous54 Units 

Blade chord, c 0.75 8 m 

Blade length, R 220 7500 m 

Sail substrate Mylar Kapton -- 

Sail substrate thickness 2.54  2 μm 

Coatings Al, Al Al, Cr -- 

Coating thickness 0.2 0.12 μm 

Sail membrane density, ρ 1.6 1.5 g/cm3 

Sail membrane mass per blade 0.676 165 kg 

Batten mass (each), mbat 3 50 g 

Number of battens per blade, Nbat 3 150  

Blade tip batten mass, mtip-bar 0.007 1.667 kg 

Blade assembly mass, mblade 0.693 234 kg 

Number of blades, Nb 6 12  

Sail deployment system mass, mtruss 8.3 1019 kg 

Sail system mass, ms 13.3 3837 kg 

Bus mass, mbus 5 861 kg 

Total spacecraft mass, m 18.3 4698 kg 

Spin rate, Ω 1 0.26 RPM 

Sail area, As 990 625,000 m2 

Sail system loading, σs 13.4 6.1 g/m2 

Characteristic acceleration, a* 0.46 1.12 mm/s2 

 

The characteristic acceleration a* is an oft-used solar sail performance metric defined as 

the acceleration felt by the spacecraft with the sail normal to the Sun at 1 AU:56 

 
𝑎∗ = (1 + 𝜂)𝑃0

𝐴𝑠
𝑚

 (1.7) 

where the SRP at 1AU is P0 = 4.56e−6 Pa, and I use an optical efficiency η = 0.85. 



www.manaraa.com

19 

   
a) Stowed b) Hex truss is deployed and the bus sped 

up to about 5 RPM with magnetorquers. 

c) The blade reels are pitched 

collectively. 

  
d) The blades are initially deployed rapidly at a 

constant angular momentum. 

 e) Initial deployment stops when spin rate 

drops to 1 RPM. 

  
f) Blades continue deploying slowly (2 cm/s) using 

collective to add momentum and maintain 1 RPM.  

 g) Full deployment takes 2 to 3 hrs. 

Figure 1.4:  HELIOS deployment sequence screenshots* 

                                                 

*“HELIOS Advanced Solar Sail Concept,” NASA Langley Research Center YouTube Channel, 

https://youtu.be/4F97NdwvmUM, December 12, 2014 

https://youtu.be/4F97NdwvmUM
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Table 1.7 shows how a heliogyro like HELIOS can considerably improve upon past and 

future designs.  I estimate the change in performance by separating the mass associated with each 

mission’s sail system from the spacecraft bus and then adding in a corresponding mass for a 

HELIOS-like sail system.  HELIOS’ characteristic acceleration of 0.46 mm/s2 is high enough for 

most near- to mid-term missions50 and is higher than all the missions listed in Table 1.7.  This table 

breaks the analysis into two parts:  near-term (small-scale) and mid-term (large-scale).  The former 

uses a heliogyro sail system loading of 13.3 g/m2, representative of the current HELIOS design.  

The latter uses a loading of 7.2 g/m2, representative of a scaled-up HELIOS design with more and 

larger blades that achieves loading similar to the original Halley’s Comet mission. 

Table 1.7:  Performance enhancement of solar sail designs using a heliogyro 

Mission Original 
Heliogyro 

(same As) 

Heliogyro 

 (same m) 

Heliogyro 

 (same a*) 

Parameter: As m ms σs a* a* Δa* a* Δa* m Δm 

Units: m2 kg kg g/m2 mm/s2 mm/s2 % mm/s2 % kg % 

 Near-term (heliogyro σs = 13.3 g/m2) 

NanoSail-D* 10 3.84 1.35 135 0.023 0.033 46 0.205 800 2.59 -33 

Surrey 

CubeSail46 
25 3.06 1.38 55 0.063 0.096 52 0.263 316 1.88 -38 

IKAROS64 200 329 16 80 0.007 0.0072 4 0.028 306 317 -4 

Sunjammer† 1200 41 30.1 25 0.245 0.373 53 0.464 90 18.3 -56 

 Mid-term (heliogyro σs = 7.2 g/m2) 

Geostorm59 5000 250 75 15 0.155 0.183 18 0.321 107 205 -18 

SPO  

(tip vanes)47 
19,770 598 272 14 0.256 0.327 28 0.486 90 427 -29 

SPO (spar 

masses)47 
26,797 681 356 13 0.305 0.400 31 0.559 83 455 -33 

SPO  

(bus boom)47 
28,392 722 397 14 0.305 0.415 36 0.588 93 455 -37 

 

                                                 
* Alhorn, Dean, “NSD Inertial Properties,” internal NASA MSFC spreadsheet, May, 16, 2011, used with 

permission. 

† Personal communication with Billy Derbes, Sunjammer program engineering consultant to L’Garde, Inc. 

in Tustin, California, on April 26, 2013.  No published numbers available. 
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Table 1.7 has three comparisons using a heliogyro instead of the originally designed sail:  

1) the change in characteristic acceleration a* for the same sail area As, 2) the change in a* using 

the same total mass m, and 3) the change in mass possible with the same a*.  The largest benefit 

comes from swapping in a heliogyro of the same mass as the original sail.  This allows the sail to 

be much bigger, substantially increasing a*.  There is less improvement by substituting sails of the 

same area or characteristic acceleration, because the sail generally makes up a smaller portion of 

the spacecraft’s overall mass for near- to mid-term missions.  IKAROS in particular sees less 

benefit because the original sail system is less than 5% of the total mass. 

While the heliogyro is at least 80% better than all the concepts of Table 1.7 for the same 

mass, heliogyros truly excel in the far-term missions.  These missions generally require sails of 

many square kilometers making up over 80% of the total spacecraft mass.  Deploying such large 

sails becomes extremely challenging for traditional kite sails due to such issues as boom buckling, 

packaging and deployment.  The heliogyro, on the other hand, was designed from the onset with 

these large sail areas in mind, and it is the only practical means of deploying such expansive 

membranes thus far conceived.  To increase size, merely add more spools, increase the blade chord, 

or roll longer blades around each spool.  The membrane size is limited only by the available launch 

volume, so sail loading could approach the membrane areal density itself.   

Succinctly, the principal advantage of heliogyros is their superior scalability to many 

square kilometers at low sail loading, and the principal concern is the perceived risk in their 

dynamics.  This risk is compounded by the inability to ground test such expansive systems in a 

relevant environment.  Therefore, I attempt to alleviate some of the principal concerns associated 

with practical operation of heliogyros with this thesis.  I have not yet encountered any serious road 

blocks, and many concerns evaporate upon detailed examination of the first principals. 
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CHAPTER 2. ATTITUDE CONTROL VIA BLADE PITCHING 

Heliogyros can generate attitude control torques by pitching the blades using the blade 

pitch profiles illustrated in Figure 1.3, either singly or in combination.  While highly nonlinear, it 

is straightforward to calculate the net spacecraft force and moment vectors F and M given an 

arbitrary heliogyro orientation and blade pitch profile by summing each blade’s SRP force and 

moment contributions.  I wrote the HGForce algorithm to perform this forward mapping from 

blade pitch profile inputs to resultant F and M outputs.  A combined trajectory and attitude control 

system, on the other hand, must produce desired F and M vectors by commanding suitable blade 

pitch profiles.  That is, the inverse mapping of HGForce is needed to determine blade pitch profile 

commands for the lower-level pitch control system.  Unfortunately, the inverse mapping is highly 

nonlinear and has many local minima, making an iterative gradient-based solution difficult.  Also, 

the HGForce mapping is not locally onto, hence a given combination of desired F and M may 

not have a corresponding blade pitch profile solution.  The expression for an individual blade pitch 

profile consists of independent parameters for the collective αco, half-p αhp, and cyclic αcy 

amplitudes and the half-p ϕhp and cyclic ϕcy phases.  These five parameters determine the ith blade’s 

pitch θi as a function of its spin azimuth ψi through: 

 
𝜃𝑖(𝜓𝑖) = −𝛼𝑐𝑜 + 𝛼ℎ𝑝 sin [

1

2
(𝜓𝑖 − 𝜙ℎ𝑝 −

𝜋

2
sign𝛼ℎ𝑝 )] + 𝛼𝑐𝑦 sin(𝜓𝑖 − 𝜙𝑐𝑦) (2.1) 

 
𝜓𝑖 = Ω𝑡 + 𝜒𝑖 = 𝜓1 + 𝜒𝑖 𝜒𝑖 = 2𝜋

𝑖 − 1

𝑁𝑏
 (2.2) 

The “–αco” and “–(π/2)sign αhp” terms establish a convenient sign convention so that positive 

amplitudes αco and αhp yield positive moments M1 and M2 respectively and vice versa in the despun 

reference frame.  This chapter presents the HGForce forward mapping and three variations of the 

inverse mapping optimized for a particular mission goal. 
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A. Forward Mapping with the HGForce Algorithm 

For preliminary insight, HGForce makes several simplifying assumptions.  First, the 

heliogyro blades are perfectly reflective on both sides.  This implies no SRP force components 

tangential to the blade, but these forces are expected to be small.  It also implies aluminization on 

both sides of the membrane, which could raise thermal emission concerns at orbits closer to the 

sun than Earth.56  Second, it ignores self-shadowing (one blade shadowing another blade), which 

could occur when the heliogyro is near edge-on to the Sun.  Third, HGForce is quasi-static; it 

does not take into account attitude dynamics.  This means the cone angle, clock angle, and spin 

rate are assumed fixed, and HGForce varies the blade azimuth ψ to find the spin-averaged force 

and moment vectors. 

Lastly, HGForce models the heliogyro as a set of flat blades with freedom in pitch 

alone.  Chapter 4.E provides a detailed treatment of nonlinear blade twist dynamics.  As will be 

shown in that chapter, it is possible to achieve net SRP force and moment vectors within 10% of 

those generated by a flat blade in most cases, and these control disturbances settle within a few 

minutes.  The related assumption is that there is no in-plane (lead-lag) or out-of-plane (flapwise) 

bending, and the centrifugal tension is more effective at confining these motions than it is for twist.  

MacNeal derived an equation for the maximum flap angle, seen at the blade root, λ1 under a static 

load (Eq. (18) of Ref. 51): 

 
𝜆1 =

𝑃𝑅

𝜎1ℎ
 (2.3) 

where σ1 is the root tension stress.  HELIOS would have a maximum flap bending away from the 

Sun of 0.04° at 1 AU using the parameters of Table 1.6.  The lead-lag bending from blade pitching 

would be even smaller due to the smaller SRP components in this direction.  This is just a static 
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load equation, but there is no forced excitation of these bending modes and little coupling expected.  

Therefore, this entire thesis ignores the flap and lead-lag bending. 

For any given cone and clock angle relative to the Sun, the five pitch profile inputs produce 

six outputs:  the net force and moment components on the spacecraft.  Assuming perfect reflection 

on a flat blade, the SRP force on the ith blade is: 

 𝑭𝒊 = 2𝐴𝑖𝑃(𝒔̂ • 𝒛̂𝒊)
2𝒛̂𝒊 = 2𝐴𝑖𝑃( 𝑠3

ℒ𝑖 )
2
𝒛̂𝒊 (2.4) 

where Ai is the area of one blade, ℒis3 is the component of ŝ normal to the blade in the blade frame.  

The ith blade normal ẑi and Sun vector ŝ in the blade frame coordinates are: 

 𝒛̂𝒊
ℒ𝑖 = [0, 0, sign( 𝑠3 

ℒ𝑖 )]
𝑇
 (2.5) 

 𝒔̂
ℒ𝑖 = [ℒ𝑖ℬ][ℬ𝒟][𝒟𝒮][0,0,1]

𝑇 (2.6) 

The “sign(ℒis3)” ensures the blade normal is out the dark side of the blade regardless of which side 

is illuminated.  As will be shown throughout, being able to illuminate both sides of the blade is 

key to maximizing heliogyro performance.  Combining the ψ1 and χi rotations into a single ψi 

rotation about the third axis, the third, z-axis component of the Sun vector is: 

 𝑠3
ℒ𝑖 = cos 𝜃𝑖 cos 𝛾 − sin 𝜃𝑖 sin𝜓𝑖 sin 𝛾 (2.7) 

where θi is given by Eq. (2.1).  The blade’s SRP moment on the rotor hub in the blade frame is: 

 𝑴𝒊
ℒ𝑖 = [𝑅 2⁄ , 0, 0]𝑇 × 𝑭𝒊

ℒ𝑖  (2.8) 

Use the rotation matrices (1.4) to (1.6) to express Eqs. (2.4) & (2.8) in the despun frame thus: 

 

𝑭𝒊
𝒟 = 2𝐴𝑖𝑃 sign( 𝑠3

ℒ𝑖 ) ( 𝑠3
ℒ𝑖 )

2
[

cos 𝜃𝑖
sin 𝜃𝑖 sin𝜓𝑖
−sin 𝜃𝑖 cos𝜓𝑖

] 

𝑴𝒊
𝒟 = 𝑅𝐴𝑖𝑃 sign( 𝑠3

ℒ𝑖 ) ( 𝑠3
ℒ𝑖 )

2
[

− sin 𝜃𝑖
cos 𝜃𝑖 sin𝜓𝑖
−cos 𝜃𝑖 cos𝜓𝑖

] 

(2.9) 
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At this point, the individual blade contributions may be summed per Eqs. (2.10) to find the 

instantaneous F and M: 

 

𝑭𝒟 =∑ 𝑭𝒊
𝒟

𝑁

𝑖=1

 𝑴𝒟 =∑ 𝑴𝒊
𝒟

𝑁

𝑖=1

 (2.10) 

Alternatively, the equations may be spin-averaged by assuming a constant spin rate Ω and 

integrating the F and M over two revolutions (the period of half-p) per: 

 

𝑭𝒟 =
2𝐴𝑃

4𝜋
∫ sign( 𝑠3

ℒ1 ) ( 𝑠3
ℒ1 )

2
[

cos 𝜃1
sin 𝜃1 sin𝜓1
−sin 𝜃1 cos𝜓1

] 𝑑𝜓1

4𝜋

0

 (2.11) 

 

𝑴𝒟 =
𝑅𝐴𝑃

4𝜋
∫ sign( 𝑠3

ℒ1 ) ( 𝑠3
ℒ1 )

2
[

− sin 𝜃1
cos 𝜃1 sin𝜓1
−cos 𝜃1 cos𝜓1

] 𝑑𝜓1

4𝜋

0

 (2.12) 

Spin-averaging make these values more representative of the long-term effect on the spacecraft 

attitude and trajectory.  Note that Eqs. (2.11) & (2.12) integrate the azimuth and pitch of blade one 

then multiply by the total sailcraft area, which is simpler than separately integrating each blade 

and summing.  Accounting for differences in notation and reference frames, these equations are 

identical to those derived in Ref. 51 except Eqs. (2.11) & (2.12) multiply by sign(ℒis3) to account 

for illumination of either side of the blade.  There is no explicit solution to the integral of Eqs. 

(2.11) & (2.12), so I approximate it numerically. 

The forces and moments presented herein are spin-averaged then normalized per: 

 
𝑭̅ =

𝑭

2𝐴𝑃 sin 𝛾∗ cos2 𝛾∗
               𝑴̅ =

𝑴

𝑅𝐴𝑃 sin 𝛾∗ cos2 𝛾∗
 (2.13) 

so they are independent of the heliogyro’s dimensions and distance from the Sun and hence 

universally applicable.  Recall that γ* = 35° is the Sun angle yielding the most lateral thrust.  The 
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force is divided by the maximum possible lateral thrust (a flat sail at γ = γ*), and the moment is 

divided by the maximum possible spin moment (αco = γ* at γ = 0). 

The equations for the resulting forces and moments are complex, involving several 

variables related through trigonometric functions, multiplied by and within other trigonometric 

functions, so the answer is rarely intuitive.  I built the graphical user interface (GUI) shown in 

Figure 2.1 in Mathworks’ Matlab to assist my own understanding of these concepts.  This GUI has 

sliders for all five pitch profile parameters and all three angles in the rotation from sun to body 

frames.  It also allows the camera to remain fixed in the Sun or despun reference frames.  The box 

for blade aspect ratio only affects the visualization since the force and moment magnitudes are 

normalized per Eq. (2.13).  At the bottom right are five push buttons allowing for various methods 

of capturing data and visualizing the heliogyro and its forces and moments in motion. 

This GUI led to all the insights of this chapter, and it made visualization much easier than 

a two-dimensional representation or plot.  As an example that I did not analyze in depth, pressing 

the “Plot 1 Pd.” button plots the forces and moments over one or two revolutions.  Cases with a 

cyclic profile showed small fluctuations in the forces and moments corresponding to the number 

of blades, so more blades minimized the amplitude of these fluctuations.  Also, even numbers of 

blades experienced fluctuation in force but not moment components, while odd numbers of blades 

had fluctuating moment but not force components.  The spin-averaged results depicted in this paper 

were always the same, but this phenomenon could excite structural modes and should be 

investigated further. 
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Figure 2.1:  Heliogyro visualization GUI for HGForce 

The achievable set of F and M constitute a compact sub-manifold of ℝ6 of dimension at 

most five.  This mapping is not directly invertible with only five pitch profile inputs; in particular, 

there is no independent control over the total force magnitude.  One possible additional pitch 

profile parameter that I conceived but did not investigate I call “attenuate”.  It would be just like 

collective, except that each blade would alternate the sign of the blade pitch.  When sun-facing, 

this would “shutter” the blades, reducing the solar thrust without producing any moments in 

systems with even numbers of blades.  At face value undesirable, the ability to “turn the sail off” 

has many applications, including asteroid or comet rendezvous, station-keeping at sub-L1 for 

Geostorm,48 and Earth escape (Chapter 3).  This represents another unique capability of heliogyros.  
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A different method of making the inversion possible is to reduce the number of outputs by focusing 

on either the force or moment components rather than both.  The next section formulates a limited 

inverse mapping for each attitude control tactic that restricts the problem to three inputs (two pitch 

profile amplitudes and one phase) and three outputs (attitude control moment components).  These 

restricted inversions suffice for determining a set of locally optimal tactics for the mission modes 

identified in Table 1.5.  They could also seed a more comprehensive global optimization. 

B. Attitude Control Tactics 

This chapter presents three tactics for generating attitude control moments that each 

combine two pitch profiles.  I name the tactics Spin Control, Precession, and Lateral Thrust after 

their primary use, but they can each perform all three functions to some degree.  For example, the 

Spin Control Tactic is best at changing the angular momentum about the spin axis d1, but it can 

also precess the spin axis or create lateral thrust.  I use cylindrical coordinates for the moments in 

this chapter with the in-plane moment magnitude M23 and azimuth Ψ vice the components M2 & 

M3.  The tactics can then maximize the in-plane moment along a desired azimuth. 

Each attitude control tactic restricts the system to three inputs (two profile amplitudes and 

one phase), each of which primarily controls one of three outputs (M1, M23, and Ψ).  Restricting 

the problem thus makes the control inversion possible.  A multivariate linear regression of the 

forward mapping of HGForce can be solved for an approximate inversion that serves as the initial 

guess for Matlab’s constrained minimization function fmincon that finds the exact control inputs 

(objective variables) for a desired moment vector Md (objective function). Since Ψ is always 

achievable by varying the pitch profile phase, I set it as constraint.  The objective functions are M1 

and M23.  If the desired moment magnitude is impossibly large, the function returns the largest 
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possible moment in the desired direction, which is the CMA in that direction.  In this analysis, in-

plane and spin moments are equally weighted, but other weights may be preferable. 

1. Spin Control Tactic 

One of the first steps after launch is to deploy the heliogyro’s blades by slowly unreeling 

them from their stowage spools (mode 1 of Table 1.5).  The deploying blades’ increasing moment 

of inertia would slow the spin rate by conservation of angular momentum, so a collective profile 

is needed to add angular momentum and maintain spin rate.  This would normally occur at cone 

angle γ = 0° for maximum M1, but disturbance torques may cause the spacecraft attitude to drift.  

Figure 2.2 shows the resulting moments for a 35° collective profile as the cone angle increases. 

When γ ≠ 0°, this profile generates an unwanted M2 component, and M1 drops to zero as 

the heliogyro points edge-on to the Sun (γ = 90°).  Figure 2.2b illustrates this mechanism at a cone 

angle of 35°.  The top blade is directly Sun-facing, while the bottom blade is angled away from 

the Sun at 70°. The pressure differential creates an M2 moment in the same sign as γ, so it is 

important to note that this M2 is destabilizing in that it would increase |γ| during spin-up (vice-versa 

during spin-down).  Therefore, active attitude correction is required during blade deployment.  

Fortunately, one can zero out the undesired M2 and restore the desired M1 with a “cyclic moment 

correction”.  This correction overlays a cyclic profile onto the collective with amplitude α−
cy and 

phase ϕ−
cy = 0 or 180°.  The α−

cy has the same sign as γ if ϕ−
cy is set to 180° and the opposite sign if 

ϕ−
cy is set to 0°.  Furthermore, the 35° collective does not necessarily produce the largest M1 when 

γ ≠ 0°.  Therefore, the exact value of the cyclic moment correction and optimal collective pitch 

must be determined by solving the nonlinear equations.  Although it is more involved 

computationally, this is operationally simpler, smoother, and more reliable than periodically 

interrupting the spin up to restore the desired attitude with a separate slewing maneuver. 



www.manaraa.com

30 

  

 a) Moments b) Example visualization at γ = 35° 

Figure 2.2:  35° collective profile moment variation with cone angle 

Figure 2.3 shows the optimal collective profile with the cyclic moment correction applied.  

The required α−
cy varies nearly linearly at a slope of about 2/3 the cone angle.  This completely 

zeroes the unwanted moment M2 (not shown) and largely restores the desired moment M1 (blue 

line), even when γ = 90°.  Figure 2.3b shows that the upper blade is now pitched away from the 

Sun and the lower blade towards the Sun exactly enough to remove the tipping-over moment. 

  
 a) Variation with cone angle b) Example visualization at γ = 35° 

Figure 2.3:  Spin Control Tactic CMA about the spin axis with M23 = 0 

So far, this tactic has only zeroed the in-plane moments about d2, but attitude control during 

blade deployment will require CMA in all in-plane directions to maintain desired attitude in the 

presence of disturbances.  To provide these desired in-plane moments, one must add two cyclic 
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profiles together; the first (α−
cy at ϕ−

cy = 180°) is the cyclic moment correction described above to 

zero the unwanted in-plane moment, and the second (α+
cy, ϕ

−+
cy) generates the desired in-plane control 

moment.  The net cyclic amplitude αcy and phase ϕcy is calculated below, first by expanding the 

multiple angle trigonometric functions and considering that ϕ−
cy = 0 or π always: 

 𝛼𝑐𝑦 sin(𝜓𝑖 − 𝜙𝑐𝑦) = 𝛼𝑐𝑦
+ sin(𝜓𝑖 − 𝜙𝑐𝑦

+ ) + 𝛼𝑐𝑦
−  sin(𝜓𝑖 − 𝜙𝑐𝑦

− ) 

𝛼𝑐𝑦(cos𝜙𝑐𝑦 sin𝜓𝑖 − sin𝜙𝑐𝑦 cos𝜓𝑖)

= 𝛼𝑐𝑦
+ (cos𝜙𝑐𝑦

+ sin 𝜓𝑖 − sin𝜙𝑐𝑦
+ cos𝜓𝑖) + 𝛼𝑐𝑦

− cos𝜙𝑐𝑦
− sin𝜓𝑖 

(2.14) 

Convert from polar (αcy, ϕcy) to Cartesian (bcy, ccy) using bcy = αcy cos ϕcy and ccy = αcy sin ϕcy: 

 𝑏𝑐𝑦 sin𝜓𝑖 − 𝑐𝑐𝑦 cos𝜓𝑖 = 𝑏𝑐𝑦
+ sin𝜓𝑖 − 𝑐𝑐𝑦

+ cos𝜓𝑖 + 𝑏𝑐𝑦
− sin𝜓𝑖  

= (𝑏𝑐𝑦
+ + 𝑏𝑐𝑦

− ) sin𝜓𝑖 − 𝑐𝑐𝑦
+ cos𝜓𝑖 

(2.15) 

Collect sines and cosines of ψi and cancel: 

 𝑐𝑐𝑦 = 𝑐𝑐𝑦
+  

𝑏𝑐𝑦 = 𝑏𝑐𝑦
+ + 𝑏𝑐𝑦

−  

(2.16) 

Convert back from Cartesian to polar, substitute original terms and simplify: 

 
𝛼𝑐𝑦 = √(𝑏𝑐𝑦)

2
+ (𝑐𝑐𝑦)

2
 

= √(𝛼𝑐𝑦
+ cos𝜙𝑐𝑦

+ + 𝛼𝑐𝑦− cos𝜙𝑐𝑦− )
2
+ (𝛼𝑐𝑦

+ sin𝜙𝑐𝑦
+ )

2
 

𝜙𝑐𝑦 = tan
−1 (

𝑐𝑐𝑦

𝑏𝑐𝑦
) 

(2.17) 

 
𝛼𝑐𝑦 = √(𝛼𝑐𝑦− )

2
+ 2𝑎𝑐𝑦− 𝛼𝑐𝑦

+ cos𝜙𝑐𝑦− cos𝜙𝑐𝑦
+ + (𝛼𝑐𝑦

+ )
2

 

𝜙𝑐𝑦 = tan
−1 (

𝛼𝑐𝑦
+ sin𝜙𝑐𝑦

+

𝛼𝑐𝑦− cos 𝜙𝑐𝑦− + 𝛼𝑐𝑦
+ cos𝜙𝑐𝑦

+ ) 

(2.18) 



www.manaraa.com

32 

Figure 2.4 shows the resulting CMA along with the required profile parameters for an 

additional cyclic amplitude of α+
cy = 25°.  Each curve represents a different cone angle.  The curves 

show the variation of cyclic control phase ϕ−+
cy from 0 to 180°, and the results are symmetrical in 

M3.  This α+
cy yields a control moment M23 similar to the Precession Tactic of Chapter 2.B.2 while 

preserving most of the original M1.  Moreover, this tactic retains a useful in-plane CMA even edge-

on to the Sun (γ = ±90°), so it can recover from any attitude.  Note that the back sides of the blades 

must be allowed to be illuminated to achieve this CMA above about 30° cone angle.  Therefore, it 

is advantageous to aluminize both sides of the blade. 

  
 a)  In-plane CMA b) Cyclic profile (radius:  αcy, angle:  ϕcy) 

  
 c)  Spin axis CMA d) Collective pitch to maximize M1 

Figure 2.4:  Spin Control Tactic with α+
cy = 25° 

Notice in Figure 2.4a that there is more CMA in the ±M2 direction than along ±M3 at high 

cone angles.  Figure 2.5 illustrates this mechanism by showing two cases of the Collective tactic 

at a 60° cone angle.  For understanding, focus on the single blade responsible for the most in-plane 
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moment.  This is the top blade in Figure 2.5a, which is pointed only 4° off from the Sun, so M2 is 

high.  In Figure 2.5b, the right blade is the largest contributor to M3, but this blade can only ever 

have a minimum Sun angle equal to the cone angle (60° in Figure 2.5), regardless of blade pitch 

angle.  Therefore, the heliogyro will always have the most in-plane CMA along ±M2, and this 

reasoning applies to all attitude control tactics, not just Spin Control.  Fortunately, ±M2 is the 

component required to change cone angle and reduction of cone angle would the first step in 

recovering from undesirable attitudes, such as edge-on to the Sun. 

  
a) 𝝓𝒄𝒚

+ = 𝟎° (red indicates backside illumination) b) 𝝓𝒄𝒚
+ = 𝟗𝟎° 

Figure 2.5:  Spin Control Tactic M2 vs. M3 CMA at αco = 35°, α+
cy = 25°, and γ = 60° 

The results of Figure 2.4 are obtained by numerically computing the α−
cy and αco to 

maximize M1 for a given α+
cy; the in-plane moment is a dependent variable.  For use in attitude 

control however, one must find the inverse of the HGForce mapping, i.e. the required pitch profile 

to achieve a desired moment (or maximize the magnitude in a desired direction when the desired 

magnitude is not achievable).  The presence of local minima requires a reasonable seed in a 

gradient descent solution for this inverse. My approach is to first obtain an approximate inverse 

function by fitting the functional behavior with parameterized models: 

 𝜙𝑐𝑦
+ ≅ 𝛹𝑑 (2.19) 
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 𝑀̅1
sin(2𝛼𝑐𝑜)

≅ 𝑏1 + 𝑏2𝛼𝑐𝑦
+ + 𝑏3 sin 2𝛾 + 𝛾[𝑏4 + 𝑏5 cos(2𝜙𝑐𝑦

+ ) + 𝑏6 cos𝜙𝑐𝑦
+ ] 

(2.20) 

 𝛼𝑐𝑦
− ≅ 𝛾(𝑐1 + 𝑐2𝛼𝑐𝑜) 𝜙𝑐𝑦

− = 180° (2.21) 

 𝑀̅23
𝛼𝑐𝑦
+ ≅ sin(2𝛼𝑐𝑜) [𝑑1 + 𝑑2𝛾 + 𝑑3𝛾 cos(2𝜙𝑐𝑦

+ )] 
(2.22) 

using least squares regression to determine their parameter values.  I determined the form of these 

parameterized models by visually inspecting the forward mapping while using the regression R2 

to gage which of the tested terms were the largest contributors.  Table 2.1 provides the resulting b, 

c, and d coefficient values and the regression R2.  These R2 are all above 90%, so, these 

approximate solutions may suffice for first-cut mission planning.  Two slices of this six-

dimensional problem are visualized in Figure 2.6 by plotting the Spin Control Tactic’s forward 

mapping from control inputs to M1 and M23 with the regression fits in shaded gray.  These plots 

illustrate how nonlinear the inverse problem is, and they emphasize the importance of a good initial 

estimate for an iterative search of the precise solution to the inverse problem. α−
cy 

Table 2.1:  Spin Control Tactic regression (deg) 

Coefficient Eq. (2.20), αco Eq. (2.21), α−
cy Eq. (2.22), α+

cy 

1 1.1033 0.7012 0.0222 

2 -0.0127 -0.0013 -1.76e−4 

3 -0.0105   3.63e−5 

4 -0.0036   

5 -0.0008   

6 0.0014   

Regression R2 94% 99.9% 93% 
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 a) Spin moment magnitude b) In-plane moment magnitude 

Figure 2.6:  Spin Control Tactic and fits (shaded) vs. γ & ϕ+
cy at αco = 40° & α+

cy = 25° 

Figure 2.7 shows the Spin Control Tactic nonlinear inversion at γ = 0, the most likely 

application of this tactic.  The three subplots correspond to the pitch profile inputs required to 

achieve a range of desired moments M2d and M3d while keeping the desired spin-up moment M1d 

constant at 60% of the maximum.  The “d” subscript indicates this is a desired moment, and it is 

therefore an objective function in the constrained optimization.  The area outside of the “Max M23” 

line is impossibly high for these conditions, but a higher M23 could be achieved at the expense of 

M1.  The cyclic profile (Figure 2.7b and c) is centered about the origin because there is no cyclic 

moment correction when γ = 0.  At higher cone angles, both the point of zero cyclic amplitude (at 

the origin of Figure 2.7b) and the hub of the cyclic phase contours (at the origin of Figure 2.7c) 

shift up the +M2 axis since this moment automatically arises when γ > 0 (see Figure 2.2). 

Thus the Spin Control Tactic is fully realized with three components:  a collective to 

provide spin control torque M1, a cyclic moment correction for non-zero cone angles, and an 

additional cyclic for spin axis precession torque M23.  This tactic is capable of meeting both in-

plane and spin moments simultaneously, but it cannot produce in-plane moments alone.  Such 

solutions would be outside the local minimum trough explored with this attitude control tactic.  
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After blade deployment, large spin moments 

would not normally be required, though, so the 

next section presents a tactic that allows for 

primarily in-plane moments. 

2. Precession Tactic 

The half-p pitch profile is the primary 

method of controlling spacecraft attitude after 

blade deployment (e.g. modes 2, 4, 5b, and 6 of 

Table 1.5). It produces in-plane moments M2 & 

M3 to precess the spin axis.   Figure 2.8 shows 

moment components for a 75° amplitude half-p 

profile with variation in cone angle and half-p 

phase.  Similar to the spin moment of 

uncompensated collective (Figure 2.2), the in-

plane moment in Figure 2.8a decreases to zero as 

the cone angle reaches 90° with a half-p profile 

alone.  Furthermore, Figure 2.8b shows an 

unwanted spin moment M1 that arises when γ ≠ 0° 

and Ψ ≠ ±90°, so half-p must also be combined with a cyclic moment correction.  In this case, the 

cyclic moment correction zeroes the unwanted M1 instead of the unwanted M2 in the Spin Control 

Tactic. 

Figure 2.7:  Spin Control Tactic pitch 

profile required to meet a desired M2 

and M3 with M̅1 = 0.6 at γ = 0° 
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 a)  In-plane moment (M23 = 0 at γ = 90°) b) Spin moment 

Figure 2.8:  75° Half-p profile variation with cone angle 

Figure 2.9 shows the complete Precession Tactic with the combined half-p and cyclic 

profiles for maximum CMA, found by iterative solution of Eq. (2.12).  The half-p amplitude of 

Figure 2.9c maximizes the in-plane moment of Figure 2.9a, and the cyclic amplitude of Figure 2.9b 

eliminates the unwanted M1 (not shown).  This cyclic moment correction is nearly linear with a 

slope of about γ/2 vs. 2γ/3 for the Spin Control Tactic.  The cyclic moment correction partly 

restores the desired in-plane moment M23 (compare Figures 2.9a and 2.8a), similar to the Spin 

Control tactic’s restoration of M1.  Also like the Spin Control Tactic, it provides the CMA to 

recover from the worst-case orientation, γ = 90° (mode 6 of Table 1.5).  This would require both 

sides of the blade to be illuminated, and achieving this CMA would require backside illumination 

at around 50° cone angle and above. 
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 a)  In-plane CMA b) Cyclic profile (radius:  αcy, angle: ϕhp, ϕcy = 180°) 

 
c) Half-p amplitude to maximize M23 

Figure 2.9:  Precession Tactic 

One attitude disturbance torque would come from the small flapwise deflection of the 

blades away from the Sun due to SRP.  At non-zero cone angles, this creates an M3 that would 

tend to precess the spin axis in a cone about the Sun line that can be approximated with Eq. (35) 

of Ref. 51: 

 
𝑀3 =

1

2
𝑃𝑅2 sin 2𝛾 sin 𝜆1 

(2.23) 

Given the maximum flapwise deflection of 0.04° predicted for HELIOS from Eq. (2.3), this 

disturbance torque would be less than 0.002 normalized units.  Therefore, this tactic should have 

no trouble achieving or maintaining any attitude in the presence of this solar disturbance torque. 

Cyclic on top of a half-p profile can zero the unwanted spin moment, but it can also provide 

limited spin control authority about M1; simply vary αcy to meet the desired M1.  Unfortunately, 
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the Precession Tactic M1 CMA is poor compared to the Spin Control Tactic, and the CMA drops 

to zero when Ψ = ±90° (See Figure 2.8b.).  Therefore, one should use the Spin Control Tactic when 

the primary goal is to spin-up or -down; however, the Precession Tactic could provide some limited 

control to maintain Ω during attitude maneuvers if Ψ is away from ±90°. 

Overall, this tactic is simpler than Spin Control; it does not superimpose two cyclic profiles, 

and the desired spin moment is generally zero.  This makes inversion easier with fewer parameters 

to fit.  Furthermore, an M1d = 0 can always be met, so it becomes a constraint instead of an objective 

function.  The initial pitch profile estimate comes from the approximate inverse models: 

 𝜙ℎ𝑝 ≅ 𝛹𝑑 (2.24) 

 𝑀̅23
𝛼ℎ𝑝

≅ 𝑏1 + 𝑏2𝛾 + 𝑏3𝛾 cos(2𝜙ℎ𝑝) (2.25) 

 𝛼𝑐𝑦 ≅ 𝛾(𝑐1 + 𝑐2𝛼ℎ𝑝) 𝜙𝑐𝑦
− = 180° (2.26) 

with linear regression coefficients b and c and regression R2 given in Table 2.2. Again, all 

regressions have an R2 above 90%, so these models provide reasonable initial values for iteration.  

Figure 2.10 plots two slices of the Precession Tactic’s forward mapping with the fits of Eq. (2.25) 

in shaded gray.  In Figure 2.10b, the mapping becomes very flat above about 70° half-p amplitude, 

indicating that the solution is not very sensitive to this parameter near the maximum M23.  Limiting 

this tactic to half-p amplitudes <70° would simplify it and keep F higher without significant CMA 

penalty. 

Table 2.2:  Precession Tactic regression (deg) 

Coefficient Eq. (2.25) αhp Eq. (2.26) αcy 

1 0.00838 0.7016 

2 -6.85e−5 -0.0028 

3 1.66e−5  

Regression R2 93% 97% 
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 a) Variation with γ and αhp at ϕhp = 0° b) Variation with αhp and ϕhp at γ = 60° 

Figure 2.10:  Precession Tactic in-plane moment magnitude and fits (shaded) 

Figure 2.11 gives the Precession Tactic inverse solution at a 35° cone angle, a likely 

application of this tactic (modes 4 & 5 in Table 1.5).  The cyclic amplitude of Figure 2.11a does 

not vary much with the desired M23. Also, the half-p phase in Figure 2.11c does not match up 

exactly with the desired in-plane moment azimuth Ψ because the cone angle is non-zero.  For 

example, the slope of the 45° phase line is less than one, when it would equal one at γ =  0°. 

The primary reason to change a solar sail’s attitude is to change the direction of solar thrust.  

Reorienting the entire sail surface by spin axis precession does provide the largest change in solar 

thrust, but attitude maneuvers can take hours for a heliogyro (see Chapter 2.C).  Furthermore, a 

large fraction of the solar thrust is diverted to creating the precession torque while maneuvering.  

The next section discusses an alternate method of vectoring the solar thrust with a cyclic profile, a 

process that can occur in a matter of minutes instead of hours (see Chapter 4). 
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3. Lateral Thrust Tactic 

The third and final tactic combines 

collective and cyclic profiles, similar to the Spin 

Control Tactic but with a different goal.  As 

shown in Figure 1.3c, the cyclic profile can 

generate lateral thrust without precessing the spin 

axis, useful when a relatively rapid change in 

thrust direction is required such as an Earth 

escape spiral (mode 3 of Table 1.5).  The 

heliogyro would normally be Sun-facing in this 

case so thrust could be quickly changed to any 

direction (see Chapter 3), but maintaining this 

attitude against disturbance torques would still 

require CMA in all directions. 

The Lateral Thrust Tactic starts with the 

same approach as the Spin Control Tactic:  a 

collective (αco), a cyclic moment correction (α−
cy), 

and an additional cyclic profile (α+
cy, ϕ

−+
cy).  This 

tactic, however, crosses into a different local minimum trough where the cyclic amplitude is large 

enough to completely eliminate M1.  With this tactic, cyclic amplitude sets M1, while the collective 

primarily determines M23 (opposite the Spin Control Tactic).  In both cases, the additional cyclic 

phase ϕ−+
cy sets the in-plane moment azimuth Ψ.  Lastly, it would generally be desired to maximize 

the lateral thrust in a direction set by the clock angle δ and independent of Ψ.  Unfortunately, the 

Figure 2.11:  Precession Tactic required 

pitch profile to meet a desired M2 and 

M3 with M1 = 0 at γ = 35° 
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direction of the lateral thrust created by this tactic is inextricably bound to Ψ via ϕ−+
cy.  The sign of 

αco, however, determines whether the in-plane force and moment are in the same direction or 

opposite each other.  Therefore, when M2d < 0, the collective sign is flipped and ϕ−+
cy rotated 180° 

thereby maximizing +Fl. 

 The Lateral Thrust Tactic CMA is 

given in Figure 2.12 with plots of the resulting 

profile inputs.  Notice that the authority in the 

M3 direction drops off dramatically between 

30° and 60° cone angles.  The 75° cone angle 

curve replaces the 90° curve, since this tactic 

does not have full CMA at high cone angles.  

Fortunately, it would not be needed at high 

cone angles, as the Precession Tactic could 

operate in this regime.  Figure 2.12b illustrates 

the 180° flip in ϕ−+
cy to keep thrusting in the +Fl 

direction also evident in the collective sign 

change of Figure 2.12c.  This tactic generally 

has the highest blade pitches, so nonlinear 

effects play the greatest role.  This makes 

solution convergence difficult, curtails the 

±M3 CMA at high cone angles, and leads to 

the waviness in Figure 2.12c.  The solution is 

not particularly sensitive to collective, though, 

a) In-plane CMA 

b) Polar plot of cyclic profile (αcy, ϕcy) 

c) Collective pitch 

Figure 2.12:  Lateral Thrust Tactic 
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so the problem could be simplified by limiting the collective to 50° or less for near-maximum in-

plane CMA.  Furthermore, these large blade pitch angles mean that backside illumination of the 

blades occurs at all cone angles when maximizing the CMA. 

As with the other two tactics, the inversion process for the Lateral Thrust Tactic begins 

with the initial estimate from a linear regression fit of the forward mapping.  For this tactic, I found 

the forward mapping to have the approximate form: 

 𝜙𝑐𝑦
+ ≅ 𝛹𝑑 (2.27) 

 𝑀̅23
sin 2𝛼𝑐𝑜

≅ 𝑏1 + 𝑏2𝛾 + 𝑏3𝛾 cos 2𝜙𝑐𝑦
+  (2.28) 

 𝛼𝑐𝑦
− ≅ 𝛾(𝑐1 + 𝑐2𝛼𝑐𝑜) 𝜙𝑐𝑦

− = 180° (2.29) 

 𝛼𝑐𝑦
+ ≅ 𝑑1 + 𝑑2𝛼𝑐𝑜 + cos𝜙𝑐𝑦

+ sin 𝛾 (𝑑3 + 𝑑4𝛼𝑐𝑜)

+ cos 2𝜙𝑐𝑦
+ (𝑑5 sin 𝛾 + 𝑑6 sin 2𝛾) 

(2.30) 

with fit coefficients b, c, and d and regression R2 given in  Table 2.3, and Figure 2.13 gives two 

slices of this mapping.  The regression is restricted to cases where αcy < 90° to increase coefficient 

accuracy in the areas most useful for this tactic.  This omits area where nonlinear effects push the 

solution to very high cyclic amplitudes such as Ψ near ±90° and the cone angles above 65°, such 

as in Figure 2.13a.  Even so, the large amplitudes of this tactic make linear regression of α+
cy 

difficult; the R2 of Eq. (2.30) is only 85% even with six terms, and adding further terms yields 

little improvement.  Figure 2.13b illustrates the lack of ±M3 CMA at high cone angles, evidenced 

by the dramatic drop off in M23 when ϕ−+
cy (related to Ψ) is near 90°. 

The resulting inversion is shown in Figure 2.14 for 0° cone angle, as this is the most likely 

attitude for implementation of this tactic.  As designed, the M23 depends mostly on collective 

(Figure 2.14b) and very little on cyclic amplitude (Figure 2.14a), opposite the case in the Spin 

Control Tactic.  Figure 2.14b & c illustrate the flip in sign at M2 = 0 previously described. 
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 Table 2.3:  Lateral Thrust Tactic regression (deg) 

Coefficient Eq. (2.28) αco Eq. (2.29) α−
cy Eq. (2.30) α+

cy  

1 0.6895 0.701049 57.3130 

2 -0.0063 -0.001091 0.2403 

3 0.0019  55.4580 

4   -0.7359 

5   -44.6979 

6   19.1768 

Regression R2 95% 99.9% 85% 

  
 a) Additional cyclic amplitude b) In-plane moment magnitude 

Figure 2.13:  Lateral Thrust Tactic and fits (shaded) vs. γ and ϕ−+
cy at αco = 50° 

C. Tactic Comparison 

The operational modes listed in Table 1.5 cover many practical solar sail mission scenarios.  

Each mode can be optimally served with one of the attitude control tactics developed in Chapter 

2.B.  Which tactic is optimal often depends on a tradeoff between the tactics’ precession and lateral 

thrust capabilities.  Since large spin moments would not generally be needed after blade 

deployment, the principal comparison is between the Precession and Lateral Thrust Tactics. 
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1. Lateral Thrust Capability 

Per the frame definitions, a positive cone 

angle produces positive, attitude-based lateral 

thrust (e.g. +Fl for δ = 0°), and a cyclic profile can 

also produce lateral thrust.  Figure 2.15 shows the 

heliogyro’s maximum lateral thrust capability 

versus cone angles.  The “Attitude-dependent” 

line is equivalent to the capabilities of a flat sail, 

so only negative lateral thrust is possible at 

negative cone angles.  The “Net” line highlights 

the heliogyro’s unique lateral thrusting 

capability, as it can produce a positive lateral 

thrust at all cone angles.  The “Cyclic-dependent” 

line is difference between the other two.  This line 

touches zero at 35° cone angle because no pitch 

profile can improve upon a flat sail at this angle.  

Otherwise, the cyclic profile is able to improve 

upon a flat sail’s lateral thrust by pitching the 

individual blades closer to the optimal 35°.  The “cyclic amplitude” corresponds to the right axis 

and is the amplitude that maximizes +Fl.  The resulting optimal cyclic amplitude is found to be an 

affine function of cone angle:  a straight line with a slope of −1.15°/degree and intercept of 41°.  

Figure 2.15 represents the heliogyro’s lateral thrusting capability when it is not producing any 

attitude control moments, but such moments would be required during real operations. 

Figure 2.14:  Lateral Thrust Tactic 

required pitch profile to meet a desired 

M2 and M3 with M1 = 0 at γ = 0° 
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Figure 2.15:  Maximum lateral thrust when no moment is desired and δ = 0° 

Figure 2.16 compares these two tactics for a range of M2d and cone angles, given M1d = 

M3d = 0.  A positive M2 increases γ and vice versa, so this is the most useful moment when a change 

in cone angle is primarily desired, such as operational modes 5b (70° slew maneuver) and 6 

(recovery from high cone angles).  To aid comparison, red shading indicates where each tactic has 

the lower lateral thrust.  The Precession Tactic only produces attitude-dependent lateral thrust, so 

it cannot produce positive lateral thrust when γ ≤ 0°.  The Lateral Thrust Tactic uses the cyclic 

profile to increase lateral thrusting at low and negative cone angles.  Therefore, when only small 

moments are required to maintain attitude, use the Lateral Thrust Tactic for cone angles less than 

about 20° and the Precession Tactic for higher cone angles.  The next section covers cases requiring 

large moments for rapid slewing of the cone angle. 

One final note is that both attitude control tactics reduce the lateral thrust from the 

maximum possible shown in Figure 2.15.  This is because lateral thrust is not an objective function 

in the attitude control tactics’ optimization.  Figure 2.15 optimizes the cyclic profile to maximize 

lateral thrust when no moment is desired, whereas the attitude control tactics optimize the 

combined pitch profile to meet the desired moment without regard for lateral thrust.  Any time one 
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desires an attitude control moment at non-zero cone angles, the cyclic moment correction must be 

applied to achieve the desired moment direction.  This correction is almost entirely dependent on 

the cone angle and not the desired moment, so even very small desired moments can require large 

cyclic amplitudes at high cone angles.  Therefore, it would be advantageous to have a generous 

attitude control dead band when the primary goal is to maximize thrust (as opposed to meeting the 

desired attitude control moment).  For example, during mode 4 or 5a of Table 1.5, use a cyclic 

profile to maximize lateral thrust while allowing the cone angle to drift ±15°, then apply the 

Precession Tactic to restore the 35° cone angle.  This is one case where a piecemeal approach 

would be advantageous rather than constantly applying the Precession tactic with its attendant 

cyclic moment correction. 

  
 a)  Precession Tactic b) Lateral Thrust Tactic 

Figure 2.16:  Fl vs. M2d and γ at M1d = M3d = 0 with the sub-optimal regions shaded in red 

Attitude disturbance torques would not be confined to the M2 direction depicted in 

Figure 2.16.  Figure 2.17 compares the two tactics’ lateral thrust at a 35° cone angle for all feasible 

in-plane moments.  The Precession Tactic yields a higher lateral thrust for all desired moments 

except when |M3d| is low and |M2d| is high, like the conditions in Figure 2.16.  This is due to two 

effects.  First, cyclic does double duty in the Lateral Thrust Tactic—as the moment correction α−
cy 

and the α+
cy to eliminate M1—neither of which is to maximize lateral thrust.  Therefore, this tactic 
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requires high cyclic amplitudes even at low required moments, reducing available thrust.  

Furthermore, Figure 2.17a shows that the lateral thrust generated by the Precession Tactic is 

completely decoupled from the in-plane moment azimuth Ψ.  With the Lateral Thrust Tactic, 

however, the ϕcy sets Ψ and the cyclic-dependent lateral thrust direction.  Therefore, the Precession 

Tactic will keep more lateral thrust intact when the desired thrust and moment directions are not 

aligned (in this case, when the desired M3 is large relative to the desired M2). 

  
 a)  Precession Tactic b) Lateral Thrust Tactic 

Figure 2.17:  Fl vs. M2d and M3d at γ = 35° with sub-optimal regions shaded in red 

2. Estimated Slew Times 

One way to compare spin axis precession rates is by estimating the time for a slew 

maneuver to change the cone angle.  First, approximate HELIOS’ mass moment of inertia as six 

flat plates, a ring, and a cylinder:70 

 
𝐼𝑠 = 𝑚𝑠 diag [

𝑐2

24
+
𝑅2

6
,
𝑐2

24
+
𝑅2

6
,
𝑐2 + 𝑅2

12
+ (

𝑅

2
+ 𝑟ℎ𝑒𝑥)

2

]

= diag[40,333; 40,333;  81,667]  𝑘𝑔 ⋅ 𝑚2 

(2.31) 

 𝐼𝑡𝑟𝑢𝑠𝑠 = 𝑚𝑡𝑟𝑢𝑠𝑠𝑟ℎ𝑒𝑥
2 diag[1,1,2] 

𝑟ℎ𝑒𝑥 =
𝑐

2
(1 + √2) 

(2.32) 

 
𝐼𝑏𝑢𝑠 = 𝑚𝑏𝑢𝑠 diag [

𝑟𝑏𝑢𝑠
2

4
+
ℎ𝑏𝑢𝑠
2

12
,
𝑟𝑏𝑢𝑠
2

4
+
ℎ𝑏𝑢𝑠
2

12
,
𝑟𝑏𝑢𝑠
2

2
] (2.33) 
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𝑟𝑏𝑢𝑠 = 0.3 𝑚, ℎ𝑏𝑢𝑠 = 0.9 𝑚 

 𝐼𝑡𝑜𝑡 = 𝐼𝑠 + 𝐼𝑡𝑟𝑢𝑠𝑠 + 𝐼𝑏𝑢𝑠 = diag[40,337; 40,337;  81,674]  𝑘𝑔 ⋅ 𝑚
2 (2.34) 

where the diag function is a diagonal matrix representing the principal moments of inertia about 

the heliogyro center of mass, assumed coincident with the plane of rotation and spin axis.  

Comparing equations (2.31) & (2.34), the sail blades comprise 99.99% of the total mass moment 

of inertia due to their extreme length.  For comparison, a square sail of the same area and mass 

would have principal moments of inertia of about [1098, 1098, 2195] kg⋅m2, or 2.7% that of the 

heliogyro.  Considering that HELIOS’ 1 RPM spin rate gives it an angular momentum of 8553 

Nms, slewing the heliogyro is considerably more difficult than for a square sail.  Fortunately, the 

lateral thrusting capability partially obviates the need for rapid slewing. 

The instantaneous maximum precession rate about d̂3 (for a change in γ) is given by: 

 
𝜔3𝑚𝑎𝑥(𝛾) =

𝑀2𝑚𝑎𝑥(𝛾)

Ω𝐼3𝑡𝑜𝑡
 (2.35) 

The M2max(γ) line is plotted for both tactics in Figure 2.16.  The Precession Tactic’s maximum 

moment with HELIOS’ parameters at 1 AU is 0.23 Nm at γ = 0 and 0.13 Nm at γ = 90°, giving 

HELIOS a maximum slew rate of 5.6°/hr at γ = 0 and 3.1°/hr at γ = 90°.  Break down the terms of 

Eq. (2.35) to get a rough idea of what could possibly improve this extremely slow slew rate.  From 

Eq. (2.12), the maximum moment is proportional to: 

 𝑀2𝑚𝑎𝑥 ∝ 𝑅𝐴𝑠𝑃 (2.36) 

and the largest contributor to moment of inertia about the spin axis is: 

 
𝐼3𝑡𝑜𝑡 ≅

𝑚𝑠𝑅
2

3
 

81,674 𝑘𝑔 ⋅ 𝑚2 ≅ 80,667 𝑘𝑔 ⋅ 𝑚2 

(2.37) 

Therefore, the factors most affecting maximum slew rate are: 
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𝜔3𝑚𝑎𝑥 ∝

𝐴𝑃

𝛺𝑚𝑠𝑅
 (2.38) 

so the slew rate could be increased by: 

a) increasing the ratio of sail area to blade radius, e.g. more blades or wider blades, 

b) moving closer to the Sun, 

c) lowering the spin rate, or 

d) lowering sail loading (ms/As), e.g. thinner membrane or fewer battens and other features, 

especially towards the blade tip. 

Other considerations prevent changes to the number of blades, blade chord, and membrane 

thickness for HELIOS.  The only pertinent variable is spin rate, currently 1 RPM for solarelastic 

stability reasons,26,27,74 but this is an ongoing area of research and subject to change. 

Numerical integration of the slew rate ω3max(γ) is required to find the minimum slew times.   

 
𝛾(𝑡𝑓) = 𝛾(𝑡0) + ∫ 𝜔3𝑚𝑎𝑥(𝛾)𝑑𝑡

𝑡𝑓

𝑡0

 (2.39) 

Figure 2.18 shows the results of this integration from an initial cone angle of zero.  Since there is 

negligible angular acceleration with the heliogyro’s spinning architecture, the time to slew between 

two cone angles can merely be subtracted and the time to slew ± a given cone angle would be 

doubled.  For example, it would take about 13.3 hr to slew from +35° to –35° and 45 hr to slew 

from +90° to –90° with the Precession Tactic. 

The Lateral Thrust Tactic has slightly more M2 CMA at all cone angles, and therefore 

shorter slew times in Figure 2.18; however, these results use the flat blade assumption.  The 

nonlinear blade dynamics investigation of Chapter 4.E reveals that this assumption loses validity 

at the high amplitudes required for maximum M2.  These nonlinear effects reduce the CMA for the 

Lateral Thrust tactic, while increasing the CMA for the Precession Tactic.  Combining that with 
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the Lateral Thrust Tactic’s difficulty generating M3 at high cone angles makes the Precession 

Tactic the recommended tactic for large slews and all operations above ~60° cone angle. 

 
Figure 2.18:  Slew angle vs. time for HELIOS 

D. Chapter Summary and Recommendations 

Table 2.4 summarizes the three attitude control tactics and makes recommendations about 

their application.  Since each of the three tactics can perform all three functions (spin control, 

precession, and lateral thrust) to some degree, onboard logic might select the one meeting the 

desired moment vector while maximizing force in a desired direction.  Together, these three tactics 

give the heliogyro full mission capability.  Their solutions are an optimal moment vector under the 

imposed tactic constraints, but they could seed an optimization of all five pitch profile objective 

variables for all six force and moment component objective functions. 

The practicalities of actuating heliogyro blades to achieve desired attitude control moments 

have not been studied at any length until now.  Use of the canonical collective, cyclic, half-p blade 

pitch profiles one at a time introduces unwanted effects when the heliogyro is not pointed directly 

at the Sun, complicating attitude control.  Combining pitch profiles is simpler and safer than 

successive application of single pitch profiles at removing these unwanted effects.  Furthermore, 
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three-axis attitude control is always required to counter disturbance torques while simultaneously 

following a desired trajectory.  The three attitude control tactics developed herein optimize the 

pitch profile to meet concurrent goals and should serve for all typical heliogyro operations.  Using 

these tactics, the heliogyro can produce an attitude control moment in any direction at any attitude, 

making it a very capable and robust solar sail concept. 

Table 2.4:  Summary of attitude control tactics 

Tactic Spin Control Precession Lateral Thrust 

Pri. profile Collective Half-P Cyclic 

Sec. profile Cyclic Cyclic Collective 

Parameters in 1st column primarily controlled by… (below) 

Ψ ϕcy ϕhp ϕcy 

M23 αcy αhp αco 

M1 αco αcy αcy 

α−
cy ≅ −2γ/3 −γ/2 −2γ/3 

Pros Best M1 CMA 

Good M23 CMA 

at all γ 

Best lateral thrust for attitude 

maintenance when γ > 20° 

Best M3 CMA at all γ 

Good M1 CMA 

Best lateral thrust when γ < 

20° 

Cons Lower M23 CMA 

No M23 without 

M1 

Worst M1 CMA 

Poor lateral thrust at γ < 20° 

Worst M3 CMA at γ > 60° 

Moment and thrust 

directions coupled 

Suggested 

uses 

For large 

changes in spin 

rate/angular 

momentum 

Large slews 

Maintaining attitude with γ > 

20° when lateral thrusting 

Maintaining attitude at all γ 

when not lateral thrusting 

All operations with γ > 60° 

Maintaining attitude with γ 

< 20° when lateral 

thrusting 

 

This chapter also mapped the achievable moment and thrust versus Sun angle, providing 

clear insights for mission planners.  In particular, trajectory designers should account for the 

reduction in thrust that attitude maneuvers will require in their force models.  Furthermore, the 

heliogyro’s unique lateral thrusting capability allows for rapid changes in thrust direction without 

precessing its large angular momentum vector.  This would be especially useful for planetary orbits 

or small trajectory corrections where slewing the entire spacecraft is impractical. 
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CHAPTER 3. EARTH ESCAPE STRATEGIES 

Maneuvering in Earth orbit is one of the most difficult applications of solar sail technology, 

but most near-term missions are low-cost demonstrators that will be launched as secondary 

payloads in Earth orbit.  Heliocentric orbits have such long periods that attitude maneuvers are 

generally inconsequential to the trajectory dynamics.  For example, SPO uses modes 4 & 5 of 

Table 1.5, and even the 14 hours for the heliogyro to perform the ±35° slew (see Chapter 2.C.2) 

of mode 5b would be insignificant.  This chapter examines how the heliogyro might best 

accomplish Earth escape and compares its performance to flat sails. 

A. Canonical Planetary Escape Strategies 

Planetary escape strategies can be grouped as shown in Table 3.1 based on two parameters:  

the method of changing the thrust direction and the Sun’s position relative to the orbit plane.  

McInnes assumes a flat sail and pitches the entire sail to change the thrust direction.56  MacNeal 

uses a cyclic pitch profile to generate thrust perpendicular to the Sun line without slewing, so his 

trajectories are specific to the heliogyro.51  Both McInnes and MacNeal use two different orbit 

families: the first with the Sun-orthogonal to the orbit plane (s⊥), and the second with the Sun 

coplanar with the orbit plane (s||).  Both also assume circular orbits. 

Table 3.1:  Planetary escape strategies 

Orbit plane 

Thrust  

vectoring 

Sun orthogonal (s⊥) 

e.g. dawn-dusk Sun-synchronous 

Sun coplanar (s||) 

e.g. geostationary 

via spacecraft 

slewing 

(MI)56 

Precess the spacecraft spin axis 

around a 35° cone once per orbit. 

180° slew per orbit 

90° sail cone angle for part of each 

orbit. 

via cyclic pitch 

profile 

(MN)51 

One continuous cyclic profile Four blade pitch profiles per orbit:   

0° collective, 42° cyclic, 90° 

collective (feathered), -42° cyclic 
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Recall that solar sails generally generate attitude control torques by shifting the CP-CM 

offset.  Shifting the CM does not affect the net solar thrust because the reflective surface is 

unaffected.  Shifting the CP reduces the available solar thrust since it diverts some photons for 

torque generation.  Heliogyros shift the CP with pitch profiles.  McInnes assumes that his sails 

achieve the desired attitudes without affecting thrust, which implies attitude control by some 

means other than CP shift, such as CM shift.  However, his strategies sometimes call for sail cone 

angles γ of 90°.  A solar sail with attitude control by CM shift alone cannot recover from such a 

condition, as the sail area exposed to sunlight drops to zero.  Indeed, solar sail designers often 

compensate by setting a cone angle limit of 60° to 70°.  On the other hand, kite sails (a subset of 

flat sails) are three-axis stabilized, so they could set the angular velocity when Sun-facing and 

coast through the edge-on orientation.  In practice, these sails would likely need additional, non-

SRP, attitude actuators (e.g. reaction wheels), making this strategy somewhat idealized.  To allow 

for a more realistic comparison, one must account for the Precession Tactic required for a heliogyro 

to follow McInnes’ optimal strategies. 

1. Sun-orthogonal trajectories (s⊥ ) 

The first family of trajectories under consideration have the Sun orthogonal to the orbit 

plane, for example, a dawn-dusk Sun-synchronous orbit (SSO).  The problem is that SSOs do not 

exist above low Earth orbit (LEO).  Consequently, ride-shares to Sun orthogonal trajectories would 

start deep in the gravity well at altitudes with non-negligible atmospheric drag.  Furthermore, the 

Sun would not stay orthogonal to the orbit plane throughout an escape lasting many months; the 

Earth’s oblateness could only help maintain the geometry for a small fraction of the whole escape. 

McInnes’ Sun-orthogonal strategy (MI s⊥ ) slews the sail normal (the spin axis for 

heliogyros) along a 35° cone relative to the Sun every orbit.  Note that the half-angle of the 
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precession cone and the Sun cone angle have the same value.  For the ideal sail, this maximizes 

thrust along the velocity vector at all points for maximum increase in orbit energy.  The heliogyro 

would have to precess the spin axis with a continuous M3 moment generated by the Precession 

Tactic.  One can estimate the M3 required without a full dynamics simulation by assuming the rigid 

body slewing from Eq. (2.35) and a circular orbit.  In this case, however, only a fraction (sin γ) of 

the total angular momentum must be slewed, and the slew is at the mean motion rate n: 

 𝑀3 = −𝜔𝐬⊥Ω𝐼3 sin 𝛾 (3.1) 

 
𝜔𝐬⊥ = 𝑛 = √

𝜇

𝑟3
 (3.2) 

where μ is the Earth’s gravitational parameter and r is the circular orbit radius.  Figure 3.1a 

illustrates the heliogyro orientation in this strategy with the required Precession Tactic in a circular 

SSO.  The precession moment (magenta arrow) is perpendicular to orbit velocity v.  The required 

precession moment is large in LEO and drastically reduces the thrust available for orbit-raising. 

MacNeal’s Sun-orthogonal strategy (MN s⊥ ) uses a cyclic blade pitch profile to generate 

thrust perpendicular to the Sun and along the velocity vector, as shown in Figure 3.1b with the 

green force arrows for a 42° cyclic to maximize lateral thrust.  The spin axis always points at the 

Sun, so the slew requirement is only ~1°/day, which I neglect.  On the other hand, the maximum 

lateral thrust a cyclic pitch profile can generate is only 58% that of pitching a flat sail, as was 

shown in Figure 2.15.  This implies less thrust along the velocity vector and therefore less orbit-

raising capability.  I will show later which has the larger thrust penalty:  precessing the spin axis 

with the Precession Tactic or using a cyclic profile for lateral thrust. 
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 a) McInnes’ precessing (MI s⊥ ) b) MacNeal’s non-precessing (MN s⊥ ) 

Figure 3.1:  Illustration of Sun-orthogonal (s⊥ ) escape strategies with zoomed heliogyro views 

Both McInnes’ and MacNeal’s Sun-orthogonal strategies are symmetrical around an orbit, 

so eccentricity stays relatively constant.  When starting from LEO, it is important to limit 

eccentricity and keep the periapse as far from the atmosphere as possible to limit drag.  At higher 

orbits, a large eccentricity may be advantageous for escape when third body effects are included. 

2. Sun-coplanar trajectories (s||) 

The second family of trajectories have the Sun coplanar with the orbit plane.  An example 

trajectory would be a geostationary orbit (GEO).  The Sun is only perfectly coplanar at the 

equinoxes, but it stays within ±23° throughout the year.  Therefore, the Sun-orbit geometry should 

be relatively similar throughout escape, regardless of launch epoch, unlike the Sun-orthogonal 

family.  Moreover, with frequent launches to GEO, it should be easier to get ride-shares.  GEO is 

well clear of the atmosphere and has about 80% more orbit energy than LEO, so it significantly 

shortens the time to escape.   

McInnes presents Sun-coplanar strategy (MI s||) using a locally optimal steering law.  

Figure 3.2a illustrates the orbit in GEO, which requires the sail to slew 180° per orbit and an 
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instantaneous 180° flip every orbit (at the left illustration within Figure 3.2a).  This flip is not 

necessary if both sides of the sail membrane are reflective, which I assume here.  Essentially, as 

the solar sail moves away from the Sun (right illustration), it points directly at it for maximum 

thrust along the velocity vector.  As it moves towards the Sun (left illustration), the sail is “turned 

off” by using a cone angle of 90°. 

The equation for cone angle as a function of true anomaly 𝑓 with McInnes’ locally optimal 

steering law is Eq. (4.100) of Ref. 56: 

 
𝛾 =

1

2
[𝑓 − cos−1 (

cos 𝑓

3
)] (3.3) 

This law maximizes the acceleration along the velocity vector for a flat sail with attitude control 

by CM shift, but it does not account for the reduction in thrust seen by solar sails performing 

attitude control by CP shift, such as the heliogyro.  Precession rate ω is the derivative of Eq. (3.3): 

 𝑑𝛾

𝑑𝑓
=
𝜔

𝑛
=
1

2
+

sin 𝑓

6√1 −
cos2 𝑓
9

 
(3.4) 

The required control moment is: 

 𝑀2 = 𝜔Ω𝐼3 (3.5) 

The limiting case where precession rate is highest occurs at f = π/2 where γ = π/2. This is, 

unfortunately, the attitude at which most sails—including heliogyros—have the least CMA. 

MacNeal’s Sun-coplanar strategy MN s|| 0τ points the heliogyro at the Sun while using 

cyclic pitch profiles to change the thrust direction.  He uses four blade pitch profiles per orbit:  42° 

cyclic (top illustration in Figure 3.2b), 90° collective (left illustration), –42° cyclic (bottom 

illustration), and 0° collective (right illustration).*  The idea is similar to McInnes’, in that the sail 

                                                 
* Ref. 51 uses 30° vice 42° cyclic and 60° vice 90° collective, but the values I use improve performance. 
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thrusts away from the Sun when moving away, and it turns the thrust off when moving towards 

the Sun.  As with Sun orthogonal, this strategy has a negligible slew rate compared to McInnes’ 

requirements and the cyclic profile cannot produce as much lateral thrust as slewing a flat sail. 

  
 a) McInnes’ precessing b) MacNeal’s non-precessing 

Figure 3.2:  Illustration of Sun-coplanar (s||) escape strategies 

Sun-coplanar strategies are asymmetric around the orbit, so eccentricity is continually 

changing.  Initially circular orbits, like GEO, would become more eccentric.  Initially eccentric 

orbits could either become more or less eccentric depending on the angle between the eccentricity 

vector (the vector pointing at periapse) and the sun.  Elliptical orbits could be circularized by 

choosing a launch epoch that put periapse on the non-thrusting part of the orbit (left illustration in 

Figure 3.2a & b).  The strategy would then raise periapse, a critical issue for ride-shares to 

geosynchronous transfer orbit (GTO), which have a low periapse with high atmospheric drag. 

B. Analytical Performance Metrics 

McInnes’ compares his escape strategies in Table 4.3 of Ref. 56 using a factor ϵ that I dub 

the “escape factor”:  
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𝜖 =

Δ𝑟𝜇

𝑎∗𝑟3
 (3.6) 

This equation assumes a solar sail in a circular orbit with radius r, characteristic acceleration a*, 

and a change in radius per orbit of Δr.  For other planets, scale the characteristic acceleration 

relative to the SRP at that planet.  McInnes derives this equation from Lagrange’s Variation of 

Parameters for the two-body equations of motion.  The escape factor has the advantage of being 

independent of sail performance (removed by Δr/a*), so it is useful for directly comparing escape 

strategies’ relative worth.  It is also independent of orbit size for strategies where the sail spin axis 

is not precessed.  For precessing strategies, the precession rate is a proportional to mean motion 

and therefore inversely proportional to circular orbit radius.  Higher precession rates (lower orbits) 

require larger amplitude pitch profiles, which reduce the net thrust and escape factor.  Lastly, it is 

independent of distance from the sun, so these results hold for other planets. 

Eq. (4.89) of Ref. 56 for Δr can be rewritten in terms of ϵ using Eq. (3.6): 

 
𝜖 =

2

𝑎∗
∫ 𝑎𝑣(𝑓)𝑑𝑓
2𝜋

0

 (3.7) 

Since MacNeal’s sun-coplanar law is broken into discrete segments, the escape factor may be 

calculated analytically. 

∫ 𝑎𝑣(𝑓)𝑑𝑓
2𝜋

0

= 

∫ 𝑎𝑣𝑐𝑦
42 (𝑓)𝑑𝑓

𝜋
4

−
𝜋
4

+∫ 𝑎𝑣𝑐𝑜
90 (𝑓)𝑑𝑓

3𝜋
4

𝜋
4

+∫ 𝑎𝑣𝑐𝑦
−42 (𝑓)𝑑𝑓

5𝜋
4

3𝜋
4

+∫ 𝑎𝑣𝑐𝑜
0 (𝑓)𝑑𝑓

7𝜋
4

5𝜋
4

 

(3.8) 

The front sub- and superscripts indicate the pitch profile and amplitude respectively during each 

arc.  The acceleration along the velocity vector in terms of the Sun-frame force components is: 

 𝑎𝑣𝑚 = −𝐹𝑠 sin 𝑓 + 𝐹𝑙 cos 𝑓 (3.9) 

Several of these force components are known: 
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 𝐹𝑙𝑐𝑜
90 = 𝐹𝑠𝑐𝑜

90 = 𝐹𝑙𝑐𝑜
0 = 0, 𝐹𝑠𝑐𝑦

42 = 𝐹𝑠𝑐𝑦
−42 , 𝐹𝑙𝑐𝑦

−42 = − 𝐹𝑙𝑐𝑦
42 ,

𝐹𝑠𝑐𝑜
0 = 𝑎∗𝑚 

(3.10) 

Substitute Eqs. (3.9) & (3.10) into (3.8) and simplify: 

 
𝑚∫ 𝑎𝑣(𝑓)𝑑𝑓

2𝜋

0

= 

= − 𝐹𝑠𝑐𝑦
42 ∫ sin 𝑓 𝑑𝑓

𝜋
4

−
𝜋
4

+ 𝐹𝑙𝑐𝑦
42 ∫ cos 𝑓 𝑑𝑓

𝜋
4

−
𝜋
4

− 𝐹𝑠𝑐𝑦
42 ∫ sin 𝑓 𝑑𝑓

5𝜋
4

3𝜋
4

− 𝐹𝑙𝑐𝑦
42 ∫ cos 𝑓 𝑑𝑓

5𝜋
4

3𝜋
4

− 𝐹𝑠𝑐𝑜
0 ∫ sin 𝑓 𝑑𝑓

7𝜋
4

5𝜋
4

 

= − 𝐹𝑠𝑐𝑦
42 0 + 𝐹𝑙𝑐𝑦

42 √2 − 𝐹𝑠𝑐𝑦
42 0 + 𝐹𝑙𝑐𝑦

42 √2 + 𝐹𝑠𝑐𝑜
0 √2 

= √2(2 𝐹𝑙𝑐𝑦
42 + 𝐹𝑠𝑐𝑜

0 ) (3.11) 

Substituting Eq. (3.11) into Eq. (3.6) gives a compact formulation of escape factor for this strategy: 

 
𝜖 = 2√2(2

𝐹𝑙𝑐𝑦
42

𝐹𝑠𝑐𝑜
0 + 1) (3.12) 

The ratio 𝐹𝑙𝑐𝑦
42 𝐹𝑠𝑐𝑜

0⁄  = 0.2246 always, regardless of heliogyro dimensions and distance to the sun, 

and it can be found using the HGForce algorithm developed in Chapter 2.A. 

Simulations can be used to validate the escape factor using the initial and final semi-major 

axes, regardless of the number of orbits, as long as the eccentricity stays small.  First, maintain the 

circular orbit assumption so that the time derivative of true anomaly is the mean motion: 

 𝑑𝑓

𝑑𝑡
≅ 𝑛 = √

𝜇

𝑎3
 (3.13) 

Then the change in semi-major axis per orbit Δa is: 
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Δ𝑎 = 2𝜋
𝑑𝑎

𝑑𝑓
= 2𝜋

𝑑𝑎

𝑛𝑑𝑡
= 2𝜋√

𝑎3

𝜇

𝑑𝑎

𝑑𝑡
 (3.14) 

Substitute Eq. (3.14) into Eq. (3.6), integrate, and simplify: 

 

𝜖 =
2𝜋𝜇

𝑎∗𝑎3
√
𝑎3

𝜇

𝑑𝑎

𝑑𝑡
=
2𝜋

𝑎∗
√
𝜇

𝑎3
𝑑𝑎

𝑑𝑡
 (3.15) 

 
𝜖𝑎∗∫ 𝑑𝑡

𝑡𝑓

𝑡0

= 2𝜋√𝜇∫ 𝑎−
3
2𝑑𝑎

𝑎𝑓

𝑎0

 

𝜖𝑎∗(𝑡𝑓 − 𝑡0) = 4𝜋√𝜇 (
1

√𝑎0
−

1

√𝑎𝑓
) 

(3.16) 

 

𝜖 =
4𝜋

𝑎∗(𝑡𝑓 − 𝑡0)
(√

𝜇

𝑎0
−√

𝜇

𝑎𝑓
) (3.17) 

Therefore, the escape factor may be estimated using the initial and final semi-major axis and the 

simulation duration.  Eqs. (3.18) to (3.24) are a collection of the above derivations along with other 

useful formulations of escape factor: 

For av constant (Sun-orthogonal strategies): 𝜖 = 4𝜋
𝑎𝑣
𝑎∗

 (3.18) 

For McInnes’ ideal Sun-orthogonal strategy:56 𝜖 =
8𝜋

3√3
= 4.84 (3.19) 

For MacNeal’s Sun-orthogonal strategy: 𝜖 = 4𝜋
𝐹𝑙𝑐𝑦

42

𝐹𝑠𝑐𝑜
0 = 2.82 (3.20) 

For av a function of f (Sun-coplanar strategies): 𝜖 =
2

𝑎∗
∫ 𝑎𝑣(𝑓)𝑑𝑓
2𝜋

0

 (3.21) 

For McInnes’ ideal Sun-coplanar strategy:56 𝜖 = 5.52 (3.22) 

For MacNeal’s Sun-coplanar strategy: 𝜖 = 2√2(2
𝐹𝑙𝑐𝑦

42

𝐹𝑠𝑐𝑜
0  + 1) = 4.10 (3.23) 
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For measuring from numerical simulations: 𝜖 =
4𝜋

𝑎∗(𝑡𝑓 − 𝑡0)
(√

𝜇

𝑎0
−√

𝜇

𝑎𝑓
) (3.24) 

Another useful comparison is an estimate of the escape time.  McInnes develops an 

analytical estimate of escape time t∞ by assuming the orbit remains circular and the escape factor 

is constant.  Eq. (3.25) reformulates Eq. (4.113) of Ref. 56 by substituting Eq. (3.21): 

 

𝑡∞ =
4𝜋

𝜖𝑎∗
√
𝜇

𝑎0
 (3.25) 

The assumption of constant ϵ may be relaxed by returning to the original integral of Eq. (3.26) and 

integrating to Earth’s sphere of influence (SOI) rSOI ≅ 1e6 km. 

 
𝑡∞ =

2𝜋√𝜇

𝑎∗
∫

𝑑𝑟

𝜖(𝑎)𝑎3 2⁄

𝑟𝑆𝑂𝐼

𝑎0

 (3.26) 

I use these two performance metrics, ϵ and t∞, to compare the relative performance of the escape 

strategies presented in the next section.  The circular-orbit assumption is particularly invalid for 

Sun-coplanar strategies, so Eqs. (3.25) & (3.26) are only rough approximations for actual escape 

time.  Nevertheless, they are still useful measures of relative performance. 

C. Strategy Analysis and Comparison 

This subchapter presents the escape factor found for all the strategies presented earlier.  

Precessing strategies take into account the reduction in thrust when performing Precession Tactic 

necessary to follow that strategy’s steering law.  I also ran numerical simulations in the Copernicus 

trajectory optimizer to confirm the escape factor calculations.  Copernicus, developed by NASA 

Johnson Space Center (JSC), has a relatively low overhead, intuitive GUI, capable optimization 

module, and great flexibility for representing low-thrust, solar electric propulsion (SEP) 

trajectories, but it does not simulate solar sails.55  Through judicious selection of settings, 
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Copernicus can represent a solar sail trajectory as a series of SEP segments that account for 

eclipsing and distance from the Sun.  The only noteworthy restriction is that the baseline thrust 

magnitude (before accounting for eclipsing and distance to the Sun) and thrust cone angle (angle 

between F and s) must be piecewise linear.  The specific settings used are in APPENDIX A. 

1. Sun-orthogonal trajectories (s⊥ ) 

Figure 3.3 presents the escape factors for MacNeal’s (MN) and McInnes’ (MI) Sun-

orthogonal strategies along with two modified strategies that account for the required precession 

of a heliogyro.  As mentioned earlier, the escape factor varies by orbit radius when accounting for 

the required heliogyro precession torque.  Figure 3.3 uses orbit-radii of 7878 km (1500 km altitude) 

out to 1e6 km, just beyond the Earth’s SOI. 

 
Figure 3.3:  Sun-orthogonal (s⊥) escape strategy relative performance (MN = MacNeal, MI = McInnes, Oγ = 

optimized cone angle, CMτ = precession torque by CM shift, HGτ = HELIOS using the Precession Tactic, 0τ 

= no precession torque required) 

MacNeal’s original strategy (MN s⊥  0τ) changes the thrust direction with a cyclic profile, 

so it requires no precession torque (0τ); however, its escape factor is 40% worse than McInnes’ 

ideal strategy (MI s⊥  CMτ) that precesses the entire spacecraft.  McInnes’ strategy implies torque 
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by CM shift (CMτ) and is therefore possible for kite sails but not for heliogyros.  These two escape 

factors come from Eqs. (3.20) & (3.19), respectively.  MI s⊥  HGτ diminishes the thrust of 

McInnes’ strategy to account for the torque HELIOS would require (HGτ) to precess its spin axis 

about a 35° cone.  To do this, I find the M3 required for precession at each orbit radius from Eq. 

(3.1), then I use the Precession Tactic of Chapter 2.B.2 to determine the required pitch profile and 

net thrust remaining.  Lastly, I convert the reduced thrust to acceleration and substitute into Eq. 

(3.18).  The resulting performance is substantially less than the ideal case.  Furthermore, the M3 

required exceeds HELIOS’ capability below about 80,000 km. 

The optimal cone angle for a heliogyro is no longer 35° since the blade pitch profile required to 

precess the heliogyro spin axis significantly reduces the available thrust and slightly changes the 

solar thrust direction.  Smaller cone angles require less torque to precess and so have more thrust 

available, but larger cone angles direct more of the available thrust along the velocity vector.  Oγ 

s⊥  HGτ is a new strategy I developed that optimizes the cone angle γ (Oγ) at each orbit radius to 

maximize thrust in the velocity direction.  It follows a procedure similar to that of MI s⊥  HGτ, 

except that it determines the optimal cone angle at each altitude by iteration.  Figure 3.4 shows 

how the resulting cone angle varies with orbit radius.  The Oγ s⊥  HGτ strategy slightly improves 

on the non-ideal McInnes’ strategy applied to a heliogyro (MI s⊥  HGτ) from Figure 3.3.  

Considering all these strategies, the best Sun-orthogonal strategy for HELIOS would therefore be 

MacNeal’s strategy (MN s⊥  0τ) to an orbit of about 120,000 km and then switch to the optimized 

cone angle strategy (Oγ s⊥  HGτ) for the rest of the escape.  This strategy would escape in 2.4 

years per Eq. (3.26), too long to be compelling for interplanetary missions, but it could be applied 

to planetary missions desiring a change in orbit energy without escaping. 
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Figure 3.4:  Optimal cone angle vs. circular orbit radius in a Sun-orthogonal orbit 

Figure 3.5 shows a simulation of MacNeal’s strategy in Copernicus using the HELIOS 

parameters of Table 1.6.  The initial orbit is Sun-synchronous at 1500 km altitude to be above most 

atmospheric effects.  It has a 102° inclination, and I choose the epoch and right ascension of the 

ascending node (RAAN) to make the Sun perpendicular to the orbit plane.  In this and all 

subsequent Copernicus figures, the thick set of axes represent the Earth-fixed coordinates and the 

thin set of axes are in the Earth-Sun, two-body rotating frame.  The Sun lies along the thin x-axis.  

The spacecraft orbit is the cyan line, and the red lines represent exaggerated thrust vectors at each 

integration step.  This orbit equates to an escape factor of 2.78 using Eq. (3.24), and is therefore 

only 1% away from the analytical result of 2.82 from Eq. (3.20). 



www.manaraa.com

66 

 
Figure 3.5:  MacNeal’s MN s⊥ 0τ strategy at a 1500-km altitude SSO 

As the orbit grows, it is impossible to maintain Sun-synchronicity, so the Sun cannot stay 

orthogonal to the orbit plane indefinitely.  Figure 3.6 shows a Copernicus simulation of this 

strategy for 150 days in the Earth-Sun rotating frame.  The first 60 days (cyan) have a much smaller 

change in the relative position of the Sun because the Earth’s oblateness precesses the orbit plane.  

In the last 90 days (green) the orbit plane rapidly rotates with respect to the Sun because the altitude 

is too high for oblateness to take much effect.  After 150 days, the Sun is 42° from the orbit plane, 

so one would switch to a Sun-coplanar strategy of the next section.  Furthermore, while this 

trajectory does not yet experience eclipse, it will enter Earth’s shadow within a further 30 days. 

Notice that the orbit does not start orthogonal to the Sun in Figure 3.6.  Instead, I optimize 

the initial epoch and RAAN to maximize the final orbit periapse.  When starting from LEO, staying 

well above the atmosphere is more important than maximizing orbit energy, and maximizing 

periapse limits eccentricity growth.  Even so, eccentricity reaches 0.1.  The final change in orbit 

semi-major axis a is 4076 km, which equates to an average escape factor of 2.63.  This is only 6% 

below the analytical escape factor, which is surprising considering how far from orthogonal the 

Sun is for most of the trajectory.  
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 a) Top view looking down from ecliptic north b) Back view looking towards the Sun 

Figure 3.6:  MN s⊥ 0τ for five months starting from a 1500-km altitude SSO 

Three design parameters, discussed in Chapter 2.C.2, could be varied to make the 

precessing strategies more competitive with non-precessing ones:  increase the ratio of sail area to 

blade radius, lower the spin rate, or lower sail loading.  Any of these changes would allow the 

heliogyro to precess at the same rate without diverting as much SRP thrust for moment generation.  

Figure 3.7 varies the spin rate and shows the orbit radius above which the precessing strategies 

(MI s⊥ CMτ and Oγ s⊥ HGτ) just presented have higher escape factors than the non-precessing 

(MN s⊥ 0τ) strategy.  Even at a spin rate of 0.1 RPM (which is likely to cause instability26) 

MacNeal’s non-precessing strategy (MN s⊥ 0τ) is preferable below 27,000 km, well above LEO. 
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Figure 3.7:  Spin rate where the precessing strategies reach parity with MacNeal’s MN s⊥  0τ 

2. Sun-coplanar trajectories (s||) 

Sun-coplanar strategies would be useful for ride-shares to GEO.  MacNeal’s original 

strategy uses four discrete pitch profiles to thrust along the velocity vector, again without 

precessing the heliogyro.  I improve upon his original strategy by iterating to find the locally 

optimal pitch profile to maximize thrust along the velocity vector for a given true anomaly.  

Figure 3.8 compares MacNeal’s and the optimized blade pitch profiles. 

 
 a) MacNeal’s concept (MN) b) New, optimized profile (OP) 

Figure 3.8:  Pitch profiles for Sun-coplanar (s||), no precession (0τ) strategies 
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MacNeal’s profile makes four discontinuous jumps every 45° true anomaly, while the 

optimized profile has two discontinuities at 0 and 180° but otherwise varies the profile smoothly.  

In the optimized profile, the backside of the blades would be illuminated from 0 to 180° true 

anomaly.  This further reinforces the advantages of allowing both sides of the blade to be 

illuminated when considering blade design.  MacNeal’s concept would also likely see some 

backside illumination when at the 90° collective considering flexible blade transients, but this 

glancing illumination would not drive blade design.  Figure 3.9 depicts these two strategies’ 

resulting thrust vectors in orbit to better illustrate the maximization of thrust along velocity. 

 
 a) MacNeal’s original concept (MN) b) New, optimized profile (OP) 

Figure 3.9 Illustration of thrust vectors (red arrows) for Sun-coplanar (s||), no precession (0τ) 

Figure 3.10 shows the relative performance of all Sun-coplanar strategies.  Three strategies 

do not vary with orbit radius:  McInnes’ ideal Sun-coplanar strategy MI s|| CMτ, MacNeal’s MN 

s|| 0τ, and my optimized profile strategy OP s|| 0τ.  These lines come from Eqs. (3.22), (3.23), and 

(3.21), respectively.  I determine the acceleration of OP s|| 0τ for use in the integral of (3.21) by 

using HGForce on the pitch profiles of Figure 3.8b.  McInnes’ strategy applied to the heliogyro 

MI s|| HGτ varies with orbit radius because it accounts for the reduction in thrust HELIOS would 

experience when generating the required torque for precession.  I find the required moment M2 at 

each point in the orbit from Eq. (3.5), use the Precession Tactic to determine the net thrust and 

acceleration, and then numerically integrate per Eq. (3.21) for the escape factor at each orbit radius. 
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Figure 3.10:  Sun-coplanar (s||) escape strategy relative performance (MI = McInnes, MN = MacNeal, OP = 

optimized blade pitch profile, CMτ = precession torque by CM shift, 0τ = no precession torque required, HGτ 

= HELIOS using the Precession Tactic) 

The optimized profile strategy OP s|| 0τ is 17% better than MacNeal’s MN s|| 0τ.  McInnes’ 

ideal MI s|| CMτ is the highest performer because it uses the full sail area for thrust vectoring, so 

it does not apply to heliogyros.  When accounting for the required precession torque, MI s|| HGτ 

is worse than MacNeal’s original strategy MN s|| 0τ below about 200,000 km, and it is never better 

than the new, optimized pitch profile strategy OP s|| 0τ.  Even if the spin rate were dropped to 0.1 

RPM—which would likely lead to blade instabilities—the maximum escape factor would only be 

4.4.  This is still worse than the optimized pitch profile strategy’s escape factor of 4.8.  The best 

strategy for HELIOS to escape from Sun-coplanar orbits would be the new, optimized pitch profile 

strategy OP s|| 0τ for the entire escape.  In fact, it is 87% as good as McInnes strategy MI s|| CMτ 

that is theoretically the best but invalid for the heliogyro.  The escape time estimate from LEO for 

this strategy is 515 days, 40% shorter than the best Sun-orthogonal strategy.  Escape from GEO 

would only take 150 days, 70% less time than from LEO. 
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Figure 3.11 shows simulations of HELIOS using the optimized pitch profile strategy OP 

s|| 0τ at LEO and GEO.  Both cases account for eclipsing, as evidenced by the disappearance of 

red thrust vectors around the –x-axis, and they start at an equinox for worst-case eclipsing. 

  
 a) 1500-km altitude LEO b) GEO 

Figure 3.11:  OP s|| 0τ, accounting for eclipsing 

Without eclipsing, the escape factor is 5.16 in LEO and 4.93 GEO, both slightly above the 

analytical value of 4.8 from Figure 3.10.  This small difference may come from inaccuracies in 

Copernicus’ thrust modeling discussed earlier.  When accounting for eclipsing, the LEO escape 

factor drops by 25% to 3.87.  Even with this large penalty, however, it is still 37% better than the 

best heliogyro Sun-orthogonal strategy.  The worst-case eclipse penalty in GEO is only 3.2%, 

dropping the escape factor to 4.77.  Furthermore, GEO only experiences eclipse for 46 days twice 

a year,61 so the net eclipse penalty is immaterial. 

D. Chapter Summary and Recommendations 

There is significant reduction in performance of strategies that require precession of the 

heliogyro spin axis when accounting for the blade pitch profiles required to generate the attitude 
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control moments.  The reduction is such that the non-precessing strategies are preferred out to 

circular, Earth orbit radii of at least 100,000 km.  These non-precessing strategies would change 

the thrust direction using cyclic blade pitch profiles.  Furthermore, the best non-precessing strategy 

is almost 87% as good as the best, idealized precessing strategy that makes assumptions that are 

invalid for the heliogyro.  Considering that the heliogyro generally at least doubles the 

characteristic acceleration over other kite sail architectures (see Table 1.7), the heliogyro is still 

the preferred architecture by a large margin. 

Table 3.2 summarizes the Sun-orthogonal and Sun-coplanar strategies. The best Sun-

coplanar strategy escapes about 40% faster than the best Sun-orthogonal strategy when starting 

from the same orbit radius.  Moreover, it is easier to get ride-shares above LEO when going to 

Sun-coplanar orbits (e.g. GEO).  Starting from GEO instead of LEO would cut the escape time by 

70% from 515 days to only 150 days, a considerable operational savings.  Furthermore, the Sun-

orthogonal geometry cannot be maintained throughout escape as the Earth orbits the Sun.  

Therefore, both orbit families would experience eclipsing during escape from LEO, but eclipsing 

is negligible at GEO or higher.  Therefore, I recommend pursuing a ride-share to GEO followed 

by my new, optimized blade pitch profile (OP s|| 0τ) strategy for interplanetary missions where 

direct injection into heliocentric orbit is impractical. 

Table 3.2:  Summary of Earth escape strategy results 

Initial orbit Sun-orthogonal Sun-coplanar 

Highest practical ride-share LEO GEO 

Max eclipsing per orbit 

(cylindrical shadow model) 

None initially 

20% after 6 months 

LEO:  25%  

GEO:  5% 

Maintaining Sun alignment <45° for up to 150 days ±23° throughout escape 

Eccentricity change Small Large 

Escape factor of best strategy 2.9 4.8 

Estimated escape time LEO:  860 days LEO:  515 days 

GEO:  150 days 
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CHAPTER 4. BLADE CONTROL 

In this chapter, I examine the stability and effectiveness of a torque-source motor at the 

blade root to control blade pitch, as applied to HELIOS.  The corresponding controller employs a 

proportional/derivative/feed-forward (PDFF) law.  To perform this analysis, I derive a simplified 

finite element model (FEM) of a single heliogyro blade with freedom in twist only in Chapter 4.A 

that I call the membrane ladder.  I then convert it to a linear, time-invariant (LTI) state-space 

system to perform a linear control and stability analysis in Chapter 4.B.  This step is a necessary 

condition for nonlinear controller stability.  In Chapter 4.C, I analyze a novel method of blade tip 

control that varies the local reflectivity to create torques on the blade.  I relate the results of 

experiments to determine the frequency response function (FRF) of a small-scale, hanging blade 

in a vacuum chamber in Chapter 4.D.  This experiment is useful for validating the FEM and 

estimating material damping.  Lastly, I look at nonlinear dynamics in Chapter 4.E.  In particular, I 

develop the nonlinear describing function (DF) to investigate mode frequency shift with amplitude, 

and I simulate the performance of a nonlinear PDFF controller for a range of practical pitch profile 

applications.  The goal of this chapter is to develop a clear understanding of the relationship 

between the material damping, controller bandwidth, centrifugal stiffness, and closed loop blade 

twist stability, tracking, and performance. 

A. Finite Element Model 

The membrane ladder FEM makes assumptions to lower the computational cost compared 

to commercial finite element analysis (FEA) programs, make it more accessible to analytical and 

parametric investigation, and allow for feedback control.  Table 4.1 presents the simplifying 

assumptions alongside their justifications. 
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Table 4.1:  Membrane ladder FEM assumptions 

Assumption Justification 

Twist motion is uncoupled from other 

motions. 

Flap and lead-lag bending should be <1° over the 

length of the blade per Eq. (2.3). 

Cross-sections remain undistorted (no 

blade camber). 

HELIOS uses periodic battens to minimize 

camber. 

Elastic stiffness plays no role (membrane 

material is inelastic in tension and 

compliant in bending). 

Very little tension strain expected.  Compliance 

in bending is a conservative assumption, but 

bending stiffness is expected to be small. 

Material/structural damping is negligible This is a conservative assumption, but this 

damping is expected to be small. 

 

This model’s equations of motion (EOM) are similar to those first developed by 

MacNeal,51 but MacNeal makes the additional assumption of a homogenous blade since he was 

using continuous equations.  The membrane ladder FEM can handle an arbitrary mass distribution, 

so it allows for blade features like battens and edge reinforcing.  One should visualize the 

membrane ladder as a series of rigid rungs connected by massless membranes with zero elastic 

torsional stiffness.  Each rung contains the mass and moment of inertia of a whole blade element.  

The free-body diagram of a single rung shown in Figure 4.1 is used to derive the equations of 

motion.  Note that the blade number is unimportant for the individual blade dynamics 

investigations of this chapter, so the blade pitch subscript is written θn to denote the nth rung’s 

pitch as opposed to the ith blade’s pitch in other chapters. 

First, the gyroscopic torque τg comes from the centrifugal force acting on mass out of the 

plane of rotation, it tends to restore blade pitch toward zero (blade flat in the plane of rotation), 

and it is sometimes called the “tennis racket effect” in helicopter blade dynamics:53 

 
𝜏𝑛
𝑔
= −𝐽𝑛𝛺

2 sin 𝜃𝑛 cos 𝜃𝑛 = −𝐾𝑛
𝑔
sin 𝜃𝑛 cos 𝜃𝑛 = −𝐾𝑛

𝑔 1

2
sin 2𝜃𝑛 (4.1) 
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 𝐽𝑛 =
𝜌ℎ𝑐3Δ𝑥 +𝑚𝑛,𝑏𝑎𝑟𝑐

2

12
 

(4.2) 

The cosine factor in Eq. (4.1) comes from the fact that the restoring force is maximized at zero 

pitch and zero at 90° pitch.  The sine factor results from the lever arm of the force being zero at 

zero pitch and maximized at 90°.  The rung’s mass moment of inertia Jn includes two terms:  the 

sail membrane and any discrete bar masses mn,bar in that element (e.g. chordwise battens).  Point 

masses at the twist axis do not contribute to Jn, so they do not affect the gyroscopic stiffness Kg. 

 
Figure 4.1:  Free body diagram of rung n in the membrane ladder FEM 

Second, the centrifugal torque τc is the torque that tends to flatten any twisted membrane 

under tension.  In the heliogyro’s case, the centrifugal force provides this tension force as follows: 

 

𝑇𝑛 = 𝛺
2

[
 
 
 
 
 

1

2
𝜌ℎ𝑐(𝑅2 − 𝑥𝑛

2)
⏟          
sail memebrane
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all tip mass
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𝑅
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(4.3) 
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The batten term increases the tension at rungs inboard of each batten’s location (a ceiling function 

determines j) and assumes even batten spacing.  The tip mass term can include both bar masses 

(e.g. battens) that contribute to the rotational moment of inertia and point masses that do not. 

The membrane ladder assumes this tension is a stress uniformly distributed chordwise: 

 𝜎𝑛 =
𝑇𝑛
ℎ𝑐

 (4.4) 

where hc is the blade cross-sectional area.  This stress always lies in the direction of the attached 

membrane, so it has a component in the z-direction if the membrane is twisted.  To find the 

centrifugal torque, one must integrate the tension and lever arm along y over the blade chord c: 

 𝜏𝑛
𝑐 = 𝜎𝑛ℎ sin 𝜈𝑛∫ 𝑦𝑑𝑦 

𝑐/2

−𝑐/2

 
(4.5) 

where νn is the vertical membrane deflection angle.  Inspection of Figure 4.1 reveals that: 

 𝑧 = 𝑦 tanΔ𝜃𝑛 = Δ𝑥 sin 𝜈𝑛 

sin 𝜈𝑛 =
𝑦 tanΔ𝜃𝑛
Δ𝑥

 

(4.6) 

Substitute Eq. (4.6) into (4.5) and integrate chordwise: 

 𝜏𝑛
𝑐 =

𝜎𝑛ℎ𝑐
3

12Δ𝑥
tan(𝜃𝑛+1 − 𝜃𝑛) (4.7) 

Another possible formulation of the centrifugal stiffness used herein I call the rope ladder.  

The membrane ladder evenly distributes the tension along the chord, while the rope ladder 

concentrates tension along the leading and trailing edges, as shown in Figure 4.2.  The centrifugal 

torque does not require integration in the rope ladder; just multiply the force and lever arm: 

 𝜏𝑛
𝑐 = 2

𝑇𝑛
2

𝑐

2
 sin 𝜈𝑛 =

𝑇𝑛𝑐
2

4𝛥𝑥
tan(𝜃𝑛+1 − 𝜃𝑛) (4.8) 
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In reality, the stress distribution would lie somewhere between these two extremes, but careful 

engineering could bring the distributions closer to one or the other of these models. 

 
Figure 4.2:  Free body diagram of rung n in the rope ladder FEM 

Centrifugal stiffness is the part of centrifugal torque independent of blade pitch: 

 
Centrifugal stiffness, membrane ladder:  𝐾𝑛

𝑐 =
𝑇𝑛𝑐

2

12Δ𝑥
 (4.9) 

 
Centrifugal stiffness, rope ladder: 𝐾𝑛

𝑐 =
𝑇𝑛𝑐

2

4𝛥𝑥
 (4.10) 

Note that the rope ladder has a centrifugal stiffness multiplier in Eq. (4.10) of 1/4th vice the 1/12th 

of the membrane ladder in Eq. (4.9), thus tripling the centrifugal stiffness.  Ref. 54 mentions this 

tripling and its cause, but without derivation. 

The full FEM with N elements has N+1 blade rungs, and each rung’s EOM sums the 

gyroscopic and centrifugal torques: 
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 𝐽1𝜃̈1 = −𝐾1
𝑔 1

2
sin 2𝜃1 + 𝐾1

𝑐 tan(𝜃2 − 𝜃1) + 𝜏1 

𝐽𝑛𝜃̈𝑛 = −𝐾𝑛
𝑔 1

2
sin 2𝜃𝑛 + 𝐾𝑛

𝑐 tan(𝜃𝑛+1 − 𝜃𝑛) − 𝐾𝑛−1
𝑐 tan(𝜃𝑛 − 𝜃𝑛−1) 

𝐽𝑁+1𝜃̈𝑁+1 = −𝐾𝑁+1
𝑔 1

2
sin 2𝜃𝑁+1 − 𝐾𝑁

𝑐 tan(𝜃𝑁+1 − 𝜃𝑁) 

(4.11) 

 
(4.12) 

 (4.13) 

Except at the blade root (n = 1) and tip (n = N+1), each rung attaches to an outboard and an inboard 

membrane, so the centrifugal torque has two components.  The blade root also has an applied 

torque τ1 from the root pitch actuator.  The extra Euler and Coriolis terms typical of EOM in a 

rotating frame are zero for the twist-only case.  Note that a blade element with no chordwise 

bending (camber) does not experience SRP torque since SRP balances about the blade midline. 

B. Linear Control and Stability Analysis 

While, nonlinear effects play an important part in blade control, linear analysis is crucial 

to a baseline understanding of the dynamics and control system development.  Since any real 

structure will have some material damping, I add a material damping term to the baseline EOM.  

This is necessary for the controller bandwidth investigation of Chapter 4.B.4.  As with centrifugal 

stiffening, all rungs except the ends have two components. 

 𝜏𝑑 =
𝜅

Δ𝑥
[(𝜃̇𝑛+1 − 𝜃̇𝑛) − (𝜃̇𝑛 − 𝜃̇𝑛−1)] =

𝜅

Δ𝑥
(𝜃̇𝑛+1 − 2𝜃̇𝑛 + 𝜃̇𝑛−1) (4.14) 

Division by Δx ensures that there is less damping per unit twist angle in long elements and more 

in short elements; a long element would experience less membrane stretching for the same relative 

twist across the element.  The damping constant κ (Nm2s/rad) is a complex function of temperature, 

stress, and excitation frequency in polymers, so it must be derived experimentally.  Furthermore, 

this representation of damping produces a linear increase in damping ratio with frequency, and 
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true material damping may not behave in this fashion.  I investigate the blade’s true material 

damping magnitude and character through vacuum chamber experiments in Chapter 4.D. 

1. Linearization and conversion to state space 

Linearize the EOM by taking small angle approximations of (4.11) to (4.13): 

𝐽1𝜃̈1 = −𝐾1
𝑔
𝜃1 + 𝐾1

𝑐(𝜃2 − 𝜃1) +
𝜅

Δ𝑥
(𝜃̇2 − 𝜃̇1) + 𝜏1 

𝐽𝑛𝜃̈𝑛 = −𝐾𝑛
𝑔
𝜃𝑛 + 𝐾𝑛

𝑐(𝜃𝑛+1 − 𝜃𝑛) − 𝐾𝑛−1
𝑐 (𝜃𝑛 − 𝜃𝑛−1) +

𝜅

Δ𝑥
(𝜃̇𝑛+1 − 2𝜃̇𝑛 + 𝜃̇𝑛−1) 

𝐽𝑁+1𝜃̈𝑁+1 = −𝐾𝑁+1
𝑔
2𝜃𝑁+1 − 𝐾𝑁

𝑐(𝜃𝑁+1 − 𝜃𝑁) +
𝜅

Δ𝑥
(−𝜃̇𝑁+1 + 𝜃̇𝑁) 

(4.15) 

Eqs. (4.15)  represents a LTI system that converts to state-space as follows: 

 𝑿̇ = [
𝜽
𝜽̇
] = 𝐴𝑿 + 𝐵𝑢, 𝒀 = [

𝜃1
𝜃̇1
𝜃𝑁+1

] = 𝐶𝑿 + 𝐷𝒖 
(4.16) 

 
𝐴 = [

[0]𝑁+1×𝑁+1 [𝐼]𝑁+1×𝑁+1
𝐴∗ 𝐷∗

] 

𝐴∗ =

[
 
 
 
 
 
 
 
 −
𝐾1
𝑔
+ 𝐾1

𝑐

𝐽1

𝐾1
𝑐

𝐽1
⋱ ⋱ ⋱

𝐾𝑛−1
𝑐

𝐽𝑛
−
𝐾𝑛
𝑔
+ 𝐾𝑛

𝑐 + 𝐾𝑛−1
𝑐

𝐽𝑛

𝐾𝑛
𝑐

𝐽𝑛
⋱ ⋱ ⋱

𝐾𝑁
𝑐

𝐽𝑁+1
−
𝐾𝑁+1
𝑔

+ 𝐾𝑁
𝑐

𝐽𝑁+1 ]
 
 
 
 
 
 
 
 

 

𝐷∗ =
𝜅

Δ𝑥

[
 
 
 
 
 
 
 
 −
1

𝐽1

1

𝐽1
⋱ ⋱ ⋱

1

𝐽𝑛
−
2

𝐽𝑛

1

𝐽𝑛
⋱ ⋱ ⋱

1

𝐽𝑁+1
−

1

𝐽𝑁+1]
 
 
 
 
 
 
 
 

 

(4.17) 
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𝐵 = [
[0]𝑁+1×1
𝐵∗

] = [

[0]𝑁+1×1
𝐽1
−1

[0]𝑁×1

] , 𝒖 = 𝜏1 
(4.18) 

 

𝐶 = [

1 [0]1×𝑁−1 0 0 [0]1×𝑁
0 [0]1×𝑁−1 0 1 [0]1×𝑁
0 [0]1×𝑁−1 1 0 0

] , 𝐷 = [0] 
(4.19) 

This form makes many new analyses of the system possible, including the identification of modes 

and mode shapes, steady-state solutions, and frequency response that are explored subsequently. 

One way I validate the membrane ladder is by comparing it with MacNeal,51,53 who solved 

the one-dimensional membrane differential equation rather than using finite elements.  Figure 4.3 

shows the tip/root frequency response amplitude of a homogenous blade without a tip mass using 

100 spanwise elements.  This plot is obtained by dividing the transfer functions of root torque to 

tip pitch by root torque to root pitch. 

 
Figure 4.3:  Blade tip/root pitch frequency response amplitude 
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The variation in tip response with frequency arises as the gyroscopic stiffness and inertia torques 

change their relative magnitudes.  During a 1-period cyclic profile, they exactly cancel each other, 

and the entire blade moves uniformly. The response in Figure 4.3 matches MacNeal’s results53 to 

a root mean square (RMS) difference of 0.021.  MacNeal calculated twist modal frequencies by 

comparing his linearized one-dimensional membrane equation to Legendre’s equation.53  These 

correspond to frequencies in the membrane ladder where root torque causes no root motion but 

blade twist at other locations. That is, modes (poles) in MacNeal’s model should correspond to the 

zeros of the LTI system of Eq. (4.16).  Table 4.2 compares his analytical results to the modes of 

the FEM developed in this section.  These mode frequencies match well with 200 elements and 

approach the analytical solution with additional elements.  There is a slight decrease in agreement 

towards higher frequencies, but this is typical of FEMs. 

Table 4.2:  MacNeal vs. membrane ladder FEM twist mode frequencies (cycles/rev) 

Mode MacNeal53 N = 200 Δ N = 1000 Δ 

1 √2 = 1.414 1.416 0.14% 1.414   0.00% 

2 √7 = 2.646 2.661 0.57% 2.649 0.11% 

3 √16 = 4.000 4.039 0.97% 4.009 0.23% 

4 √29 = 5.385 5.457 1.34% 5.402 0.32% 

 

2. Steady-State Blade Shape and Impedance 

As with the tip response in Figure 4.3, the blade mechanical impedance at the blade root 

(transfer function from motion to effort) varies with frequency as the gyroscopic stiffness and 

inertia terms vary in relative strength.  One may find the blade shape and impedance analytically 

by looking at the steady-state solution to Eq. (4.16) at the desired frequency.  First, assume 

damping is non-zero, so the transient response decays over time, but that these damping torques 
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are small enough relative to the stiffness and inertial torques to be neglected.  Then, a root torque 

of cos ωbt at a base frequency of ωb yields the following: 

𝑢 = 𝜏1 = cos𝜔𝑏𝑡 , 𝜽 = 𝜶 cos𝜔𝑏𝑡 (4.20) 

𝜽̈ = 𝐴∗𝜽 + 𝐵∗𝒖 
(4.21) 

−𝜶𝜔𝑏
2 cos𝜔𝑏𝑡 = 𝐴

∗𝜶 cos𝜔𝑏𝑡 + 𝐵
∗cos 𝜔𝑏𝑡 (4.22) 

𝜶 = −(𝐴∗ +𝜔𝑏
2[𝐼])−1𝐵∗ 

(4.23) 

where bold indicates vectors defined over the set of spanwise nodes and [I] is an identity matrix. 

The spanwise shape vector α is useful for three reasons.  First, the root blade impedance is 

α1
−1 (Nm/rad).   This impedance is zero at the poles of Eq. (4.16) where root motion occurs with 

zero root torque, and the blade pitches uniformly over the span. The first pole is at 1-period cyclic 

frequency, so no torque is required to maintain this profile.  The impedance is infinite at the zeros 

of Eq. (4.16), where root torque causes no root motion.  Second, multiplying the impedance by the 

desired pitch yields the steady-state torque required for a given pitch profile. Finally, normalizing 

α by α1 reveals the steady-state blade shape along the entire blade, enabling us to choose root 

reference commands that achieve a desired steady-state blade motion at any other point via: 

𝜽𝒔𝒔 =
𝜶

𝛼1
𝜃𝑟𝑒𝑓 , 𝜽̇𝒔𝒔 =

𝜶

𝛼1
𝜃̇𝑟𝑒𝑓  

(4.24) 

While pitch rate is not in phase with pitch, the ratio α / α1 does describes the relationship of root 

pitch rate to pitch rate along the entire blade.   

Figure 4.4 gives the steady-state pitch along the entire span for a collective profile.  Again, 

I use a homogenous blade without lumped masses for comparison against MacNeal. This agrees 

with MacNeal51 to an RMS difference of only 0.005, further validating the membrane ladder.  Note 

that the collective twist deflection at the tip is only about 35% of that at the root, termed “wash 

out”, which is characteristic of collective profiles. 
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Figure 4.4:  Steady-state blade twist for a collective profile 

3. Control Law Design and Optimization 

As a first pass, I started with an idealized control law for the root motor torque inspired by 

the root spring-damper design of MacNeal.53  Crucially, I added feed forward: 

𝜏1 = 𝐾𝑃(𝜃𝑟𝑒𝑓 − 𝜃1) + 𝐾𝐷(𝜃̇𝑟𝑒𝑓 − 𝜃̇1) + 𝐾𝐹𝐹𝜃𝑟𝑒𝑓 
(4.25) 

The controller has three gains: KP, KFF, and KD.  I set KP to the root impedance α1
−1 evaluated at 

the reference/base frequency ωb.  Matching the real part of the controller impedance to the blade 

impedance (essentially real due to small material damping) should help to minimize reflections at 

the root motor and maximize energy extraction from traveling waves excited by a change in profile.  

Setting the feed forward KFF to α1
−1 as well provides the pitch profile’s proper steady-state torque 

and eliminates steady-state tracking error.  I tune KD empirically with a simulation of a cyclic 

profile transient, the most difficult to damp of the three pitch profiles.  Figure 4.5 shows the cyclic 

profile settling times for a variety of rate gains.  I define settling time as the point at which the 

resulting SRP force (averaged over one revolution) changes <10% from one revolution to the next. 
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Figure 4.5:  Rate gain optimization for cyclic profiles 

There is a clear, broad minimum between KD = 7e−4 to 1.1e−3 Nms/rad, so I set KD = 9e−4 

Nms/rad as the optimal damping constant for the HELIOS design. 

An additional design parameter affects the settling time for a collective profile:  the rate at 

which the reference pitch is ramped up to its final amplitude.  Figure 4.6 shows the settling time 

to a collective profile over a spectrum of ramp rates. 

 
Figure 4.6:  Revolutions to ramp optimization for collective profiles 
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Faster ramp rates disturb the blade more violently, excite more structural modes, and take longer 

to damp; however, ramp rates that are too slow dominate the settling time.  The sharp drop at 0.65 

revs to ramp occurs when the first overshoot stays within the 10% settling threshold.  I set the ramp 

rate to 0.75 revs to ramp to avoid this sharp jump. 

Figure 4.7 shows the performance of the linear controller for the three pitch profiles.  The 

left subplots show the pitch of the entire blade over time, measured in revolutions.  The right 

subplots compare the root and tip pitch to the reference control signal.  In each case, the times 

marked with the black dashed line indicate the blade’s settling time.  This root controller performs 

very well with all three profiles settling in less than one revolution.  Additionally, it settles over 

five times faster than MacNeal’s spring-damper system53 and eliminates steady-state error.  

MacNeal’s system has a steady state error of 25% for collective profiles since there is no feed 

forward.  Nonlinear effects, investigated in Chapter 4.E, will complicate the control problem and 

increase this settling time, but I will still use a PDFF control law. 

This idealized control system makes two simplifying assumptions related to stability:  no 

material damping and infinite controller bandwidth.  Any real control system has several 

characteristics that introduce phase loss in practical implementation.  For example, a pitch actuator 

has a finite bandwidth.  Similarly, a differentiator must have a high-frequency gain limit typically 

achieved with a low-pass filter.  Furthermore, a digital controller would apply sampling and an 

anti-alias filter.  All of these aspects add phase loss relative to the baseline controller that is 

unavoidable in practice.  This phase loss destabilizes the high frequency modes unless there is 

sufficient material damping.  Such material damping must be experimentally derived but is 

expected to be very small.  When determined, its value will establish the control system bandwidth 

(due to the bandwidth-limiting effects above) required for stability based on the analysis below. 
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 a) 10° collective profile full blade pitch b) 10° collective profile pitch at the root and tip

  
 c) 10° half-p profile full blade pitch d) 10° half-p profile pitch at the root and tip

 
 e) 10° cyclic profile full blade pitch f) 10° cyclic profile pitch at the root and tip 

Figure 4.7:  Baseline root controller performance for three blade profiles of interest 

4. Frequency Response and Stability Analysis 

To understand the relationship between control system bandwidth and material damping, I 

convert the plant of Eq. (4.16) into the frequency domain using Matlab’s bode function.  

Figure 4.8 shows the plant pitch response to root torque with a small amount of material damping.  

This and all other plots in this section use N = 400 blade elements, which is near the maximum 
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before Matlab returns an ill-conditioned matrix error.  This gives a useable frequency range up to 

350 cycles/rev, where frequency response was independent of element refinement. 

The first mode is a rigid body oscillation, so there is no blade deformation to cause 

damping.  Given κ = 2e−6 Nm2s/rad, the second mode has a damping ratio of 0.002%, which 

increases linearly with frequency, reaching 0.11% by 100 cycles/rev.  The damping coefficient 

also relates linearly to damping ratio.  The tip/root motion does not have any zeros, characteristic 

of non-colocated transfer functions with a free boundary condition.  This would cause large 

amounts of phase loss in a loop feeding back tip position to root torque, making it very difficult 

for such non-colocated loops to achieve stability. 

 
 a) Root torque to root pitch Bode plot b) Root torque to tip pitch Bode plot 

Figure 4.8:  Plant response Bode plots with κ = 2e−6 Nm2s/rad 
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The following examines the loop gain in the root control system to explain the impact on 

stability and the closed-loop response of finite control system bandwidth and material damping.  

Figure 4.9 is a block diagram of this more realistic control system with the “lag” block 

characterizing the dominant control system bandwidth of w (rad/s), typically dominated by the 

actuator bandwidth.  It uses a simple proportional/derivative (PD) feedback of root pitch to control 

root torque using a torque source motor at the blade root.  I use the baseline proportional gain KP 

for the collective profile, as this is the highest gain and, therefore, most likely to cause instability.  

I also ignore the feed forward because it does not affect stability. 

 
Figure 4.9:  Block diagram of the realistic root pitch controller 

Figure 4.10 shows the frequency response analysis of this more realistic system.  Bode 

plots of the negative loop gain are on the left (a) and (c), while the right subplots are the Nyquist 

plots of the negative loop gain (b) and the magnitude of the closed-loop tracking frequency 

response (d).  This case uses a control system bandwidth w corresponding to 30 cycles/rev and a 

material damping of 2e−6 Nm2s/rad (the same as Figure 4.8).  This damping is sufficiently small 

that it does not visibly affect the response during blade dynamics simulations, and the bandwidth 

w is one decade below the useful frequency range of the plant model. This controller bandwidth 

and damping level yield a stable system with about 40° of phase margin and root peaking less than 

5 dB.  The omitted feed forward signal would provide good tracking at root excitation frequencies 

less than 1.2 cycles/rev. The peaking at the tip reaches around 10 dB—not ideal, but this has a 

small effect in practice because of the low excitation of higher frequencies. 
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Note that the additional phase loss in the realistic control system causes the modal loops in 

the Nyquist plot to rotate clockwise at high frequencies.  Without the pinch-off in magnitude of 

the structural modes at high frequencies due to material damping, these loops would eventually 

encircle the critical point and destabilize the system. No amount of control system damping (which 

inserts phase lead) can substitute for this material damping, since such phase lead must eventually 

disappear at high frequencies for it to be physically implementable.  The control system bandwidth 

used in Figure 4.10 is 30 times the first structural mode frequency.  The low rotation rate (1 RPM) 

makes even this relatively high bandwidth a physically reasonable 0.5 Hz.   The material damping 

value is unknown, however, and much higher bandwidths may be required. 

 
 a) Bode magnitude of root pitch loop gain b) Nyquist root pitch loop gain. 

 
 c) Bode phase of root pitch loop gain d) Closed-loop tracking of root and tip 

Figure 4.10:  Closed-loop response with w = 30 cycles/rev (0.5 Hz) and κ = 2e−6 Nm2s/rad 
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The next study looks at the trade-off between material damping and controller bandwidth 

to determine their combined effect on stability and the magnitude of the blade’s response.  

Figure 4.11 shows contours of the closed loop response peaking for a range of material damping 

and control system bandwidths.  Dots show the grid of data points for which I conducted the above 

stability and response analysis with black dots being closed-loop stable, and red dots being 

unstable. 

 
 a) Maximum root response (dB) b) Maximum tip response (dB) 

Figure 4.11:  Contours of closed-loop peaking response (dB) vs. material damping and controller bandwidth 

In all cases of damping examined in Figure 4.11, the controller bandwidth must be at least 

1 cycle/rev (0.0167 Hz or the first mode) to avoid instability.  The first mode represents a rigid-

body oscillation in this free-free system, so there is no twist bending of this mode, and therefore 

no material damping.  Consequently, this mode must be phase stabilized.  This requires that the 

additional phase lag due to control system bandwidth is less than about 45° at the first mode 
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frequency to obtain any phase margin, i.e., the control system bandwidth must be no less than the 

first mode frequency (1 cycle/rev).  The ideal PD controller with the optimum damping designed 

in Chapter 4.B.3 provides 45° phase margin at the first mode, so the lag introduced by a low-pass 

filter must have a bandwidth of at least the first mode frequency to maintain stability. 

The closed-loop performance relationship of damping and bandwidth is nearly linear on a 

log-log scale for damping values below 1e–4 Nm2/rad.  Once experiments determine material 

damping levels, a designer could then refer to Figure 4.11 for the required control system 

bandwidth and allocate acceptable phase loss from the various sources.  One can see from the 

slopes of these contours that the system is relatively insensitive to material damping; bandwidth is 

much more important.  This is comforting since designers have more control over bandwidth than 

material damping.  Additionally, the tip peaking is always higher than the root because the tip is 

unconstrained.  A bandwidth of 30 cycles/rev (0.5 Hz) minimizes response peaking for reasonable 

damping levels, and higher bandwidths provide little benefit. 

C. Blade Tip Control by Local Reflectivity Modulation 

The results using root control alone provide an encouraging picture of the feasibility of 

blade twist control for heliogyros; however, one caveat is that they neglect the coupling between 

twist, flap, and lead-lag blade motions.  Once these motions are included, the damping and stability 

issue will become more complex.  Furthermore, the blade root motor is assumed to be a torque 

source, but the torques required are on the order of 1 μNm.  Friction forces would likely overwhelm 

this torque in a conventional electromagnetic motor.  Therefore, it may be more practical to use a 

position source motor at the root.  These factors may necessitate active damping at the blade tip. 

The Ultrasail project proposed a method of blade tip control using small thrusters, 12,13 but 

this requires propellant, which negates the primary advantage of solar sails.  JAXA pioneered an 
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innovative reflectivity control approach to vary solar radiation pressure acting on the sail 

membrane of their IKAROS solar sail.24  They applied a system of thin-film LCDs which transition 

from diffuse to specular reflection when powered.  I refer to this concept more broadly as a 

reflectivity control device (RCD), since other materials such as electrochromics63 may prove more 

effective.  RCDs have several advantages as tip actuators: they are flexible, can be rolled up with 

the blade, require no propellant, use little power, and are solid state.  In fact, RCDs could be 

combined with thin-film photovoltaic (PV) panels to make a self-contained system. 

This subchapter examines the effectiveness of the JAXA reflectivity control approach for 

damping torsional oscillations of a heliogyro blade.   I evaluate a system of RCDs distributed near 

the blade tip with a pitch rate feedback control law.  I evaluate this system’s settling time 

performance and closed loop stability in the presence of unavoidable control system phase loss.  I 

trade different RCD properties and feedback sensor configurations to see if such a system is 

advisable as a tip actuator. 

1. Incorporating RCDs into the Membrane Ladder FEM 

Figure 4.12 shows the generalized blade dimensions and RCD geometry.  There are two 

RCD regions at the leading and trailing edges over an area at the blade tip.  The difference in solar 

radiation pressure between the on/off specular and diffuse reflectivity states of the RCDs creates 

a torque on the blade. The RCD configuration is fully defined by any two of the following three 

parameters:  cRCD, RRCD, or fRCD (the fraction of the blade area that is RCD). The “inboard” portion 

of the blade (x < RRCD) has no RCD elements.  The “outboard” portion (x ≥ RRCD) consists of a 

combination of thin film solar cells and RCD.  The RCD is broken into independently controllable 

segment pairs.  The outboard center area contains the PV cells to power the RCDs, and I assign 

them a cRCD of 0.1 m of the full 0.75 m chord. 
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Figure 4.12:  Generalized blade RCD configuration 

RCD elements along the blade span are divided into a number of leading edge and trailing 

edge pairs.  Segments are nominally 2.5 m spanwise, with the number of segments varying 

depending on RCD areal fraction.  I assume the local solar-radiation-pressure induced torque is 

continuously variable between the minimum and maximum value, which could be accomplished 

with pulse width modulation of the RCD switching.  For linear stability analysis, I incorporate 

RCD control into the state space system of Eq. (4.16): 

 𝑿̇ = [𝜽̇
𝜽̈
] = 𝐴𝑿 + 𝐵𝑅𝐶𝐷𝒖𝑹𝑪𝑫 + 𝐵𝑟𝑜𝑜𝑡𝒖𝒓𝒐𝒐𝒕, 𝒀 = [

𝜃1
𝜃̇1
𝜃𝑁+1

] = 𝐶𝑿 + 𝐷𝑢 
(4.26) 

 

𝐵𝑅𝐶𝐷 =

[
 
 
 
 
 
0 … 0
⋮ ⋱ ⋮
0 … 0

𝐽𝑛𝑅𝐶𝐷
−1

⋱
𝐽𝑁+1
−1 ]
 
 
 
 
 

𝑁+1×𝑁−𝑛𝑅𝐶𝐷

, 𝒖𝑹𝑪𝑫  = [

𝜏𝑛𝑅𝐶𝐷
⋮

𝜏𝑁+1
]   

(4.27) 

 

𝐵𝑟𝑜𝑜𝑡 = [
[0]𝑁+1×1
𝐵∗

] = [

[0]𝑁+1×1
𝐽1
−1

[0]𝑁×1

] , 𝒖𝒓𝒐𝒐𝒕 = 𝜏1 
(4.28) 
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where nRCD is the index of the first outboard rung, and the A, C, and D matrices of Eqs. (4.17) & 

(4.19) are unchanged.  This form splits out the root and RCD control systems, as I will treat them 

separately. 

2. RCD Control System 

I evaluate three RCD configurations representing different technology levels. The first is 

based upon IKAROS’ flight-proven LCD systems.24,57  These LCDs are on a flexible substrate and 

have a density similar to that of the sail but are approximately 40 μm or 16 times thicker than 

HELIOS’ sail membrane.  The second is an advanced blade using RCD elements with twice the 

control moment effectiveness and half the thickness of those flown on IKAROS.  I base these upon 

existing reflectivity control materials without space flight heritage and at a low technology 

readiness level (TRL); for example, an electrochromic switchable mirror foil.63  The third is an 

ideal RCD using parameters that illustrate this system’s feasible performance limits.  Table 4.3 

gives the parameters for all three RCD systems.  I assign the thin film solar cells along the mid-

chord the same density and thickness as the RCD material since their construction is similar. 

Table 4.3:  Three RCD parameter sets analyzed 

 IKAROS Advanced Ideal 

ON/OFF change in specular reflectivity (ΔCs)  0.3 0.6 0.8 

ON/OFF change in diffuse reflectivity (ΔCd)  –0.3 –0.6 –0.8 

RCD thickness (hRCD) 40μm 20μm 2.5μm 

RCD density (ρRCD) 3 g/cm3 3 g/cm3 3 g/cm3 

 

To find the control torque generated by opposing RCDs, we must incorporate a more 

complex reflection force model that includes diffuse and specular terms:24 

 𝑭𝒏 = −𝑃𝐴𝑛(𝒏𝒏 ⋅ 𝒔)[(1 − 𝐶𝑠)𝒔 + (2𝐶𝑠(𝒏𝒏 ⋅ 𝒔) + 𝐵𝑓𝐶𝑑)𝒏𝒏] (4.29) 
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This assumes emission occurs in all directions and generates no net force.  The Lambertian 

coefficient Bf is 2/3 for uniform diffuse reflection.24  Taking the component normal to the blade 

element and subtracting the on/off states yields the differential normal pressure: 

 
Δ𝑃𝑛 = 𝑃 cos 𝜃𝑛 [Δ𝐶𝑠 cos 𝜃𝑛 +

2

3
Δ𝐶𝑑] (4.30) 

This assumes the heliogyro is pointing directly at the sun; otherwise, the angle of solar incidence 

replaces pitch θn.  The maximum pitching moment per blade element due to a pressure is:52 

 
𝜏𝑛,𝑚𝑎𝑥 = Δ𝑥∫ 𝑃𝑛(𝑦)𝑦 𝑑𝑦

𝑐/2

−𝑐/2

= Δ𝑥
Δ𝑃𝑛
8
(𝑐2 − 𝑐𝑠

2) (4.31) 

which sets the differential pressure generated by the area with PV cells to zero since its reflectivity 

is constant and blade camber is assumed zero. 

The control law is a rate tracker with limited control authority: 

 
𝜏𝑛,𝑟𝑒𝑞 = 𝐾𝑅𝐶𝐷Δ𝑥 (

𝛼𝑛
𝛼1
𝜃̇𝑟𝑒𝑓 − 𝜃̇𝑛) (4.32) 

 
𝜏𝑛 = {

 𝜏𝑛,𝑟𝑒𝑞 for 𝜏𝑛,𝑟𝑒𝑞 < 𝜏𝑛,𝑚𝑎𝑥

sign(𝜏𝑛,𝑟𝑒𝑞) 𝜏𝑛,𝑚𝑎𝑥 for 𝜏𝑛,𝑟𝑒𝑞 ≥ 𝜏𝑛,𝑚𝑎𝑥
 (4.33) 

The reference pitch rate at the nth rung is a function of the reference pitch rate at the root scaled 

by the blade shape factor α found using the process of Chapter 4.B.2.  I parametrically optimize 

the gain KRCD to minimize settling time.  In this case, the optimum KRCD is 1e−3 N/rad.  Increasing 

controller gain provides little difference in performance since the controller saturates. 

I evaluate two sensor configurations:  distributed sensing at each blade rung and a single 

sensor at the tip.  For the RCD parameter optimization in Chapter 4.C.3, I assume a position source 

at the root and distributed sensing.  This makes the RCD the sole source of blade damping to isolate 

its performance from root control, and the distributed sensors ensure stability.  I will show 

in Chapter 4.C.4 that single sensor configurations introduce instability in closed loop due to the 
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non-colocation of the single sensor with a distributed actuator.  In that chapter, I include the 

feedback control of a torque-source root motor with finite bandwidth from Chapter 4.B.4 to 

stabilize the complete system in closed-loop.  In both cases, I assume a 100 g tip mass (1/6th the 

nominal blade mass) representing the mass of the control system electronics. 

3. RCD Parameter Optimization 

Analysis of RCD material properties provides a baseline for future materials research.  

Increasing the difference in RCD reflectivity between the on and off states increases the differential 

pressure and, therefore, the control moment available to the system.  Sail thickness in general is 

critical to sail mass and overall acceleration, so the ideal RCD thickness would be close to that of 

the sail.  Thicker RCDs also increase mass moment of inertia making it more difficult to damp 

twisting.  IKAROS’ RCDs are approximately 16 times thicker than the 2.5 m sail material.  

Figure 4.13 shows how the combination of these two properties affected settling time. 

 
Figure 4.13:  Contours of cyclic profile settling time (revs) for a range of RCD properties with 10% fRCD 
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Variations in either parameter generated significant improvements in settling time.  

Doubling of ΔCs & –ΔCd yielded a 50% improvement in settling time, regardless of thickness.  

Halving the thickness only lowered the settling time by 35%, regardless of ΔCs & –ΔCd.  

Improving both factors at once from IKAROS to Advanced yielded a 67% reduction, which is the 

product of their individual contributions.  If settling time were the sole operational concern, 

increasing the on/off difference in RCD reflectivity would provide the greatest benefit; however, 

hRCD greatly affects mass and characteristic acceleration, the primary performance metric for solar 

sails. 

The fraction of the blade’s area covered in RCD fRCD has a direct impact on the sail’s mass, 

average reflectivity, control authority, and settling time.  Advanced RCD materials could meet 

settling time requirements with a smaller RCD.  Figure 4.14 shows how the settling time varied 

with fRCD for each of the three notional RCD materials.  I set a settling time requirement of four 

revolutions, which is four minutes for HELIOS and fast enough to change the pitch profile many 

times per orbit in LEO. 

The Advanced RCD could achieve the nominal LEO mission settling time requirement 

with only 5% coverage, and the ideal with only 1%.  IKAROS RCDs, on the other hand, are 

incapable of meeting LEO settling time requirements regardless of size.  At 25%, the IKAROS 

RCDs would more than double the heliogyro’s mass, making them impractical.  An IKAROS-type 

RCD would only be effective in at higher altitude orbits, where slower maneuvers are acceptable.  

The settling time in each case is asymptotic, so sizes larger than 10% should be avoided for mass 

and complexity reasons.  The slight irregularity of settling time determination evident in the plots 

arose because RCD authority varies with pitch angle, so they do not damp the blade in a precisely 

exponential fashion. 
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Figure 4.14:  Settling time for different RCD size and material properties 

Figures 4.13 and 4.14 illustrate how to optimize different RCD systems to meet settling 
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revolution settling time contour is used to calculate mass and characteristic acceleration.  Note that 

the x-axis is reversed to put low-mass options towards the origin.  Doubling the reflectivity 

difference from IKAROS RCD value (0.3) to the advanced RCD value (0.6) improves 

characteristic acceleration by 63%.  This shows how fRCD optimization connects increased RCD 

performance to gains in characteristic acceleration.  Further improvement to the technology’s 

practical limit (0.8) was only a 7% additional benefit in a*. 

 
 a) ΔCs & –ΔCd and fRCD vs. settling time in revs b) Mass and a* with RCD optimized for ΔCs & –ΔCd 

Figure 4.15:  ΔCs & –ΔCd effect on cyclic profile settling time, optimized fRCD, solar sail total mass and a* 
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will need to be traded against characteristic acceleration to find an acceptable mission systems 

design. 

 
 a) hRCD and fRCD vs. settling time in revs b) Mass and a* with RCD optimized for hRCD 

Figure 4.16:  hRCD effect on cyclic profile settling time, optimized fRCD, solar sail total mass and a* 
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 a) fRCD and hRCD vs. total spacecraft mass (kg) b) fRCD and hRCD vs. a* (mm/s2) 

Figure 4.17:  Total heliogyro performance variation by RCD size and thickness 

Table 4.4 Optimization summary for three RCD parameter sets on the HELIOS baseline 

Parameter IKAROS Advanced Ideal 

RCD coverage fRCD 10% 5% 1% 

Total heliogyro mass m 30 kg 21 kg 18 kg 

Characteristic acceleration a* 0.26 mm/s2 0.38 mm/s2 0.45 mm/s2 
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root control system bandwidth, but I assume the solid-state RCDs have a sufficiently quick 

response and high bandwidth relative to the root motor that we can ignore their phase loss. 

 
Figure 4.18:  Block diagram of the root and RCD control systems 

To isolate the RCD’s effect on root control, I roll the RCD control loop into the plant 

dynamics.  For stability analysis, I assume that the RCD is never saturated.  Substitute the RCD 

control law of Eq. (4.32) into the state space system of Eq. (4.26), assuming no RCD clipping: 

 
𝑿̇ = 𝐴𝑿 + 𝐵𝑟𝑜𝑜𝑡𝒖𝒓𝒐𝒐𝒕 + 𝐵𝑅𝐶𝐷𝐾𝑅𝐶𝐷Δ𝑥 (

𝛼𝑁+1
𝛼1

𝜃̇𝑟𝑒𝑓 − 𝜃̇𝑁+1) (4.34) 

𝑿̇ = (𝐴 − 𝐵𝑅𝐶𝐷[[0]1×2𝑁+1 1]𝐾𝑅𝐶𝐷Δ𝑥)𝑿 + [𝐵𝑟𝑜𝑜𝑡 𝐵𝑅𝐶𝐷𝐾𝑅𝐶𝐷Δ𝑥
𝛼𝑁+1
𝛼1

] [
𝜏1
𝜃̇𝑟𝑒𝑓

] (4.35) 

 𝑿̇ = 𝐴̅𝑿 + 𝐵̅𝒖̅ (4.36) 

These equations also implement the single tip sensor by only feeding back the tip (rung 

N+1) pitch rate.  A̅ and B̅ represent the new plant that I subject to the same control analysis of the 

root loop done in Chapter 4.B.4.  Keep in mind that the reference root rate 𝜃̇𝑟𝑒𝑓 = 0 for the 

collective profile under analysis.  I set KRCD = 1e−5 Ns/rad since this value results in very little 

RCD torque clipping in the dynamic simulation, and the linear stability analysis cannot 

accommodate clipping.  I use the Advanced RCD from Table 4.3 and the optimized 5% coverage 

from Table 4.4.  The IKAROS system would be too massive, and the Ideal system is far-term.   
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The response in Figure 4.19 uses the same material damping and controller bandwidth as 

in Chapter 4.B.4.  It also uses a root controller proportional gain KP = 4.21e−5 Nm/rad and 

derivative gain KD 9e−4 Nms/rad, optimized for collective per the procedure of Chapter 4.B.3.  

This plot reveals several key benefits and drawbacks to this RCD system when compared to the 

no-RCD system of Figure 4.10.  First, it significantly enhances damping of modes <10 cycles/rev, 

those that will contain the most energy when the system is disturbed.  Second, the tip response 

rolls off in amplitude 25% sooner.  Third, the modes shift up in frequency.  This arises from the 

extra RCD weight at the tip that increases blade tension.  Unfortunately, there are also four Nyquist 

encirclements of the critical point between 10 to 40 cycles/rev.  Careful examination reveals that 

these are counter-clockwise encirclements, and therefore not destabilizing as long as the inner, 

RCD feedback loop has the same number of pole pairs in the right-half of the complex plane. 

 
 a) Bode magnitude of root pitch loop gain b) Nyquist root pitch loop gain 

 
 c) Bode phase of root pitch loop gain d) Closed-loop tracking of root and tip 

Figure 4.19:  Closed-loop response with w = 30 cycles/rev (0.5 Hz), κ = 2e−6 Nm2s/rad, and fRCD = 5% 
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 b) KRCD = 0 (controller off) b) KRCD = 1e−5 (controller on) 

Figure 4.20:  Pole-zero maps showing the effect of RCD controller with κ = 2e−6 Nm2s/rad and fRCD = 5% 

Figure 4.20 is a zoomed view comparing the pole-zero maps for the blade with the RCD 

controller on and off.  Again, the RCD system increases damping of the first four modes from a) 

to b) as their real parts shift more negative.  Unfortunately, it also shifts the real parts of the next 

three pole pairs into the right-half plane.  These three pole pairs account for the three counter-

clockwise encirclements of Figure 4.19b, and the complete system is actually closed-loop stable.  

Hence, the RCDs alone are a destabilizing influence that the root controller must overcome and 

stabilize.  The destabilizing effect of RCDs in this case arises from the use of a single point sensor 

and a distributed actuator.  The parts of the RCD that are inboard of the tip are non-colocated with 

the tip pitch sensor, so they destabilize certain mode shapes with nodes within the RCD region.  

Therefore, larger RCDs destabilize more modes with this control approach. 

One possible but somewhat impractical solution is to use a distributed tip pitch sensing 

system, as I do in Chapter 4.C.3.  In this case, each RCD segment pair has its own colocated pitch 

rate sensor and feedback loop. Figure 4.21 shows the response of this new system.  There are no 
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encirclements of the critical point in this case, so the RCDs do not destabilize the inner loop.  On 

the other hand, the damping of the first few modes is less than with a single sensor.  With the single 

sensor, the entire RCD actuates as a unit, so its authority is concentrated towards damping the 

lowest modes.  With distributed sensing, some segments may be opposing other segments at higher 

modes shapes.  Hence, the control authority is distributed over the frequency spectrum.  Other 

methods—such as frequency domain compensation (filtering)—may work better to concentrate 

the RCD authority in the first mode while keeping the system stable. 

 
 a) Bode magnitude of root pitch loop gain b) Nyquist root pitch loop gain 

 
 c) Bode phase of root pitch loop gain d) Closed-loop tracking of root and tip 

Figure 4.21:  Closed-loop response of RCD and distributed pitch sensing with w = 30 cycles/rev (0.5 Hz), κ = 

2e-6 Nm2s/rad, and fRCD = 5% 
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D. Model validation with hanging blade experiments 

I conducted dynamics tests on a hanging heliogyro blade specimen in a vacuum chamber 

at NASA Langley Research Center during the summer of 2012.  These tests measured the blade’s 

frequency response function (FRF) at several locations along the blade length.  I use these 

experimentally derived FRFs to verify the membrane ladder FEM, estimate the material damping, 

find the mode shapes, and discuss coupling between flap bending and twisting motion.  There has 

only been one other documented experiment to verify theories of heliogyro blade dynamics, and 

it was done in 1971 by MacNeal.53  He spun a 0.001 in x 2 in x 77 in heliogyro blade for 

deployment and blade pitch control testing.  Several factors limited this test’s utility.  Chiefly, it 

was conducted at atmospheric pressure.  This meant that no estimate of material damping was 

possible, and the structural mode frequencies were shifted.  Additionally, the blade was only 

subjected to a pulse transient, so a full FRF could not be determined.  Furthermore, metrology was 

limited to video recordings with displacement measured at only two locations, so results were low 

fidelity.  Consequently, they did not achieve very good theoretical agreement. 

1. Experimental Setup 

The general idea of the experiment is to hang a small blade sample inside a vacuum 

chamber, vibrate it at the root (top) over a range of frequencies, and measure the displacement at 

several points along the blade length.  The goals of these this experiment and analysis were 

threefold: 

1. Quantify coupling effects between flap and twist bending by looking at the mode shapes.  This 

is important since the membrane ladder FEM assumes these motions are uncoupled, and 

coupled motion complicates the control problem. 
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2. Validate the membrane ladder FEM quantitatively by comparing theoretical and experimental 

mode frequencies and qualitatively by comparing the general shape of their FRFs. 

3. Estimate the test membrane’s material damping magnitude and character.  Determine if the 

vacuum chamber pressure was low enough to avoid viscous drag damping. 

Since the experimental blade is in a gravity field and not rotating, I modify the equations 

of motion by removing the gyroscopic force and replacing the centrifugal stiffness Kc with the 

gravitational tension stiffness Kgrav.  Start by adjusting the blade tension: 

 

𝑇𝑛
𝑔𝑟𝑎𝑣

= 𝑔 [𝜌ℎ𝑐(𝑅 − 𝑥𝑛) + 𝑚𝑡𝑖𝑝𝑅 + ∑ 𝑗
𝑚𝑏𝑎𝑡𝑅

𝑁𝑏𝑎𝑡 + 1

𝑁𝑏𝑎𝑡

𝑗=⌈(𝑁𝑏𝑎𝑡+1)
𝑥𝑛
𝑅
⌉

] (4.37) 

 
𝐾𝑛
𝑔𝑟𝑎𝑣

=
𝑇𝑛
𝑔𝑟𝑎𝑣

𝑐2

12Δ𝑥
 (4.38) 

 𝐽𝑛𝜃̈𝑛 = 𝐾𝑛
𝑔𝑟𝑎𝑣(𝜃𝑛+1 − 𝜃𝑛) − 𝐾𝑛−1

𝑔𝑟𝑎𝑣(𝜃𝑛 − 𝜃𝑛−1) +
𝜅

Δ𝑥
(𝜃̇𝑛+1 − 2𝜃̇𝑛 + 𝜃̇𝑛−1) (4.39) 

where g = 9.81 m/s2 is the gravitational acceleration. 

Figure 4.22 shows the experimental setup.  I excited the blade using a piezoelectric actuator 

and captured the blade’s motion with Laser Doppler Vibrometers (LDVs).  I used two different 

actuators; one actuator vibrated primarily in bending for flap motion and a second actuator 

primarily generated twist vibrations.  In this way, I could look at the twist response coupling to 

flap actuation and vice versa.  The system’s input signal was the applied voltage to the actuator.  

This signal was set to burst random over the range 0.1 to 12.5 Hz in order to capture the blade’s 

first few structural modes.  A burst random input is good at capturing the blade damping since it 

captures the response decay between bursts.  The system’s outputs were the vibration velocity as 

measured by the LDVs at ten locations along the blade length.  These locations formed a grid that 

measured the left and right edges of the blade at all five quarter points (0, ¼, ½, ¾, and 1 times the 
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blade length).  The LDVs output an analog signal sensitive to one μm/s, which I sampled at 100 

Hz.  With only two LDVs, I had to sample each quarter point sequentially rather than capturing all 

blade motion simultaneously.  I captured data at each point until the response’s coherence was no 

longer appreciably improving with each input burst, which was anywhere from 20 minutes to an 

hour. 

 
 a) Vacuum chamber exterior b) Mounted test article 

Figure 4.22:  Experimental setup 

I then post-processed the LDV velocity time histories to extract the blade’s FRFs as 

described below. 

1. Remove offsets and linear tilt in the data record via Matlab’s detrend function. 

2. Decimate by a factor of 13 from 100 Hz to 7.7Hz, yielding a Nyquist frequency of 3.8 Hz.  

Damping acted like a low-pass filter, and noise dominated the response at frequencies above 

about 3.8 Hz.  Filtering the signal focuses the analysis on the frequency range with a good 

signal-to-noise ratio.  Matlab’s decimate function uses an 8th order Chebyshev infinite 
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impulse response (IIR) filter run forwards and backwards in time to remove phase shift.  

Decimate then down samples the signal by the decimation factor.  The filter is necessary to 

avoid aliasing effects in the down-sampled signal. 

3. For some of the analysis below, I isolate the twist and flap responses at each quarter-point by 

either averaging or differencing the left and right LDV time-domain responses per Eq. (4.40): 

 
𝑣𝑡𝑤𝑖𝑠𝑡 =

𝑣𝑙𝑒𝑓𝑡 − 𝑣𝑟𝑖𝑔ℎ𝑡

𝑐
(
rad

s
) , 𝑣𝑓𝑙𝑎𝑝 =

𝑣𝑙𝑒𝑓𝑡 + 𝑣𝑟𝑖𝑔ℎ𝑡

2
(
μm

s
) (4.40) 

where v is the LDV measurement time history and c is blade chord or width (2 in). 

4. Transform the signal to frequency space using tfestimate to estimate the transfer function, 

V = Pyx/Pxx where Pyx is the cross power spectral density (PSD), and Pxx is the input PSD.  The 

tfestimate function applies a periodic Hamming window, and I find that a 50 sec window 

(five times the period of the lowest frequency of interest) works well.  That way each window 

contains several copies of the entire spectrum. 

5. Change the system input from applied voltage to root motion by dividing by the voltage-to-

root frequency response:  

 
𝑈𝑛 =

𝑉𝑛
𝑉1

 (4.41) 

where n represents the quarter point index from 1 at the root to 5 at the tip. 

The root-to-quarter-point frequency responses Un are the FRFs that I then analyze using 

the System Observability Controllability Identification Toolbox (SOCIT) for Matlab developed by 

Jer-Nan Juang, Lucas Horta, and Minh Phan.43  This toolbox estimates the linearized system state-

space matrices (A, B, C, and D) by taking the singular value decomposition of the Hankel Matrix 

of observer Markov Parameters.  SOCIT derives the observer Markov Parameters from a least 

squares fit of the discrete FRF data.42  The program can accept any number of system inputs and 
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outputs.  This system has a single input with ten outputs, one for each grid point.  With a state-

space system, SOCIT can then compute the modes and mode shapes by finding the eigenvalues 

and eigenvectors of the system matrix A.  SOCIT also computes several accuracy indicators, the 

damping ratio, and other useful parameters. 

The state space system can have any number of modes up to the number of discrete 

frequencies in the FRF, but it is desirable to pick the minimum number of modes to fit adequately 

the frequency range of interest.  This ensures one’s selected modes represent physical processes 

rather than fitting random noise; however, with real world, noisy data it is impossible to avoid 

some duplicate and computational modes.  SOCIT identifies some of these spurious modes with 

accuracy indicators such as the extended modal amplitude coherence and weighted modal phase 

colinearity. 

2. Experimental Results 

Figures 4.23 and 4.24 show the experimental FRFs using the twist and flap actuators, 

respectively.  The subplots are in a grid that mirrors the stations’ locations on the test article.  These 

FRFs represent the response of each grid point to excitation at the root.  The dashed green line is 

the system fit found by SOCIT, and the valid modes identified by SOCIT are annotated 

sequentially.  The processed FRFs are very clean, indicating that the measured signals had very 

low noise and that I gathered sufficient time history for this frequency range.  The exception is at 

the blade tip at higher frequencies, especially for twist motion.  The blade tip was as far away from 

the actuator as possible, so damping (both material and viscous) had the most filtering of high 

frequencies.  Surprisingly, the first mode is not the largest magnitude at most stations.  This may 

be due to viscous damping from residual air in the vacuum chamber.  These modes represent 

pendulum motion and would have the most drag. 
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Next, one can see that every pole has a corresponding zero at the Q1 station, but there are 

few to no identifiable zeros at the blade tip (Q4).  The number of system zeros drops off from the 

root to the tip.  This is typical of systems with a free boundary condition, as the unrestrained tip 

cannot have a zero.  Lastly, the flap FRFs have an interesting triple mode at modes 3, 4 and 5.  

This may be due to coupling of twist motion excited by the flap actuator. 

 
Figure 4.23:  Quarter-point FRFs using the twist actuator with the SOCIT identified modes 
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Figure 4.24:  Quarter-point FRFs using the flap actuator with the SOCIT identified modes 
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mode frequency in Figures 4.25 and 4.26.  A shaded plane indicates the zero-level on each shape.  
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there are only five stations, this experiment can only verify up to the fourth mode.  It does not have 

the spatial fidelity to capture all the nodes of higher modes, so they are marked as unknown in 

Figures 4.25 and 4.26. 

 
Figure 4.25:  Mode shapes for the first six modes using the twist actuator 

The pictures of mode shapes give a much clearer idea of what is happening at each mode 

frequency than the individual FRFs.  The twist actuator’s 1st, 3rd and 4th modes (Figure 4.25) are 

almost pure twist, but the 2nd mode is coupled about evenly with flap.  This corresponds to the flap 
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actuator’s 2nd mode in Figure 4.26 whose frequency is <1% away.  In fact, the 2nd flap and twist 

modes are so close that there is no forking apparent on their FRFs, even though there is coupling 

in both cases. 

 
Figure 4.26:  Mode shapes for the first eight modes using the flap actuator 
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The picture for the flap actuator is much less clear.  The 1st and 2nd flap modes are easily 

identified, but the 3rd flap mode is spread between system modes 3, 4 and 5 as seen earlier in 

Figure 4.24.  System mode 3 (1.38 Hz) is almost purely twist coupling, but system modes 4 (1.48 

Hz) and 5 (1.61Hz) are a smearing of both the 3rd twist and 3rd flap modes.  It appears that system 

mode 5 is the true 3rd flap mode, as this has the highest response magnitude in flap (see Figure 4.24) 

and the most flap character (61%) of these three modes.  Additionally, system mode 4 is only 1.3% 

away from the 3rd twist mode for twist actuation in Figure 4.23.  Therefore, system modes 3 and 4 

are largely the result of twist excitation from flap actuation.  System mode 6 is also a result of twist 

excitation from flap actuation, but its response is hardly noticeable in Figure 4.24.  Finally, while 

the first three flap and twist mode frequencies are nearly identical, the 4th flap mode (system mode 

7) is separated 0.46 Hz from the 4th twist mode at 1.96 Hz.  This large gap makes it impossible for 

the two motions to couple, which suggests that coupling should not be as much of a problem at 

higher modes. 

The next experimental goal was to verify the membrane ladder FEM.  Since the FEM is 

one-dimensional, I isolated the experimental twist response to the twist actuator per Eqs. (4.40) 

for comparison with the twist FEM equation.  Similarly, I isolated the flap response to the flap 

actuator for comparison with the flap FEM equation.  Figures 4.27 and 4.28 show the twist and 

flap comparisons, respectively.  In this case, I number the modes according to where they match 

up with theory, omitting the modes arising from coupling.  The flap and twist FEM equations of 

motion are identical, except that I tuned their mass parameters slightly differently.  The flap 

equation includes the mass of the four chordwise battens (pictured in Figure 4.22) affixed to the 

test article.  The twist equation agrees better with theory with the batten inertia omitted.  For some 
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reason, the additional inertia of the battens plays a larger part in the flapwise motion than the twist 

motion. 

 
Figure 4.27:  Experimental vs. theoretical agreement in twist motion using the twist actuator 
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Figure 4.28:  Experimental vs. theoretical agreement in flap motion using the flap actuator 

The last experimental goal is to estimate the blade’s material damping value and character.  

SOCIT estimated the damping ratio of each mode from the realization of the full system.  These 

values are plotted in Figure 4.29, listed in Tables 4.5 and 4.6, and annotated on the mode shapes 

in Figures 4.25 and 4.26.  Additionally, Figure 4.29 shows the damping ratio as modeled in the 

membrane ladder FEM. 

The chief differences with theory so far result from the model’s representation of damping.  
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This causes the FEM’s modal peaks to start out steep (low damping ratio) and flatten out with 

increasing frequency.  I selected the damping constant κ such that the FEM modal peaks 

approximately line up in magnitude with the experimental results.  This only affects the 

visualization and does not shift the mode frequencies.  Furthermore, the experimental twist 

response rolls off in magnitude towards the blade tip.  I believe this is also due to unmodeled 

damping effects that are more prominent in twist and towards the blade tip. 

 
Figure 4.29:  Damping ratio of each mode for both actuators with trend lines 

The damping character plotted in Figure 4.29 decreases linearly with frequency, which the 

plotted linear trends illustrate.  This contrasts with the FEM where damping increases with 

frequency, so some other damping model should be considered.  The trend lines also show that the 

damping is independent of the direction of motion (flap or twist).  The one exception is the first 

twist mode, which is an outlier in this experiment and was omitted from the trend line.  This may 

be due to viscous damping having a larger effect on this mode.  It would be prudent to investigate 

this phenomenon with additional tests at lower pressures and with different test article dimensions. 
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Table 4.5:  Twist actuator modal summary 

System 

Mode 

# 

Exp. 

Freq. 

Hz 

Theo. 

Freq. 

Hz 

Δ 

Freq. 

% 

Damping 

Ratio 

% 

Flap 

Character 

% 

Flap 

Mode 

# 

Twist 

Character 

% 

Twist 

Mode 

# 

1st 0.33 0.41 18.6 17.5 3.6 3rd 96.4 1st 

2nd 0.93 0.94 1.6 3.3 60.4 2nd 39.6 2nd 

3rd 1.50 1.48 -1.9 3.1 2.8 2nd 97.2 3rd 

4th 1.96 2.00 2.0 2.5 4.6 3rd 95.4 4th 

5th 2.38 2.52 5.5 1.1 75.8 4th 24.2 Unk. 

6th 2.69 N/A N/A 2.5 78.0 Unk. 22.0 Unk. 

7th 3.20 3.02 -6.1 2.4 47.3 Unk. 52.7 Unk. 

Table 4.6:  Flap actuator modal summary 

System 

Mode 

# 

Exp. 

Freq. 

Hz 

Theo. 

Freq. 

Hz 

Δ 

Freq. 

% 

Damping 

Ratio 

% 

Flap 

Character 

% 

Flap 

Mode 

# 

Twist 

Character 

% 

Twist 

Mode 

# 

1st 0.40 0.40 -0.5 5.1 96.8 1st 3.2 3rd 

2nd 0.93 0.91 -2.7 2.2 77.7 2nd 22.3 2nd 

3rd 1.38 N/A N/A 4.8 6.2 2nd 93.8 3rd 

4th 1.48 N/A N/A 2.0 55.0 3rd 45.0 3rd 

5th 1.61 1.49 -7.8 1.5 61.5 3rd 38.5 3rd 

6th 1.86 N/A N/A 2.6 11.0 4th 89.0 4th 

7th 2.42 2.29 -5.8 1.1 64.4 4th 35.6 Unk. 

8th 2.87 2.88 0.5 3.1 77.3 Unk. 22.7 Unk. 

9th 3.07 N/A N/A 3.5 18.2 Unk. 81.8 Unk. 

The damping ratios were all surprisingly high.  All modes had damping ratios >1% and 

one as high 18% for the first twist mode.  This could make blade controller design easier, as higher 

modes may not require active damping; however, the damping may still be due to atmospheric 

influences.  I ran this experiment at the lowest pressure achievable with this chamber, about 50 

mTorr (7 Pa), but I also did several runs at higher pressures.  Figure 4.30 shows the trend in 

damping ratio with pressure for both the twist and flap actuator cases.  I measured these data at 

only the blade midpoint since a full modal analysis is not necessary to estimate damping. 
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 a) Twist actuator b) Flap actuator 

Figure 4.30:  Damping ratio vs. pressure measured at the blade midpoint (Q2) 

This figure confirms that the chamber pressure was not low enough to eliminate the viscous 

damping effects, as the damping ratios’ slopes are not quite flat at the lowest pressures.  A better 

vacuum would result in further reductions in measured damping, and perhaps the first mode 

outliers would converge with the other modes.  By visual extrapolation, the true material damping 

should still be above 0.1%.  Regardless, the damping was low enough so as not to appreciably 

affect mode frequency; the experiment still validates the membrane ladder frequency response. 

E. Nonlinear blade control 

The blade analysis thus far has remained in the linear regime where excitation amplitude 

is immaterial and there is no coupling between different frequencies.  Furthermore, Chapters 2 and 

3 assume that the blades are flat in steady-state oscillation.  Unfortunately, simulations show that 

the nonlinear dynamics of a membrane blade egregiously violate the flat-blade assumption in 

certain of the common operations listed in Table 1.5.  For example, Figure 4.31 plots the root and 

tip motion for a simulation using the membrane ladder for (a) 25° and (b) 35° cyclic excitation 

along with the reference root signal.  This excitation comes from a torque-source root actuator 

using a PD controller with root pitch feedback.  The tip response for the 25° cyclic root pitch 
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excitation is very well behaved and quickly settles.  In contrast, the tip response for a 35° cyclic—

only 10° higher—is unacceptably large. 

  
 a) 25° cyclic amplitude b) 35° cyclic amplitude 

Figure 4.31:  Dynamic simulations of membrane ladder FEM for cyclic reference signal 

This cyclic excitation instability is corroborated with simulations shown in Figure 4.32 

using the Abaqus commercial FEA software package.  These simulations model a uniform 

membrane with the HELIOS dimensions of Table 1.6 except there are no features or lumped mass.  

They use a material and numerical integration damping of 0.1%.  This model also incorporates full 

3D motion of the blade, SRP, material elasticity, and a free-spinning hub.  Consequently, the 

Abaqus simulations required hours on a dedicated server whereas the membrane ladder 

simulations completed in a few seconds on a laptop.  Note that the Abaqus simulation has more 

high-frequency excitation because there is no feedback control, whereas the root control law used 

in Figure 4.31 successfully damps the blades’ natural response.  While the magnitude of the tip 

excitation is not as large in Figures 4.32b as 4.31b, the 35° cyclic case is clearly less stable than 

the 25° case.  The steady-state solution developed in Chapter 4.E.1 can guide blade design towards 

some mitigation of this problem, discussed in Chapter 4.E.2. 
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 a) 25° cyclic amplitude b) 35° cyclic amplitude 

Figure 4.32:  Abaqus simulations of a membrane blade with cyclic excitation* 

The second motivation for developing the steady-state solution is to augment the control 

law with feed-forward (FF), as discussed in Chapter 4.E.3.  The linear controller optimization 

of Chapter 4.B found that feed forward was critical to enforcing blade pitch tracking, but the steady 

state solution for the nonlinear EOM is nontrivial.  A gyroscopic torque in the rotating reference 

frame is a nonlinear spring that pulls the blade away from the reference pitch towards the plane of 

rotation (0° pitch).  Without FF, PD feedback gains optimized to rapidly damp transients are too 

low to provide good tracking of the reference.  Conversely gains high enough to enforce tracking 

result in much longer settling times, since the root actuator impedance becomes large, reflecting 

rather than absorbing modal oscillations. 

1. Steady-state solution by Fourier harmonic expansion 

The system of coupled, nonlinear differential equations represented by Eqs. (4.11) to (4.13) 

cannot be solved for θ(t) explicitly.  One can approximate the solution through a series expansion.  

A harmonic series is convenient since the control system will excite the blade root sinusoidally at 

frequencies of multiple 0, ½, or 1 times the heliogyro rotation frequency Ω.  Furthermore, 

simulations shown in section Chapter 4.E.3 reveal that the steady-state response is dominated by 

                                                 
* Abaqus simulations courtesy of Jerry Warren, Structural Dynamics Branch, NASA LaRC. 
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these frequencies and their harmonic multiples.  Assuming such a harmonic series for the motions 

and efforts with unknown coefficients yields the following steady-state response at each blade 

rung for the root applied control torque τ1(t):
69 

 
𝜃𝑛(𝜙) =

𝛼𝑛
(0)

2
+∑𝛼𝑛

(𝑘) cos(𝑘𝜙)

𝑘

+∑𝛽𝑛
(𝑘) sin(𝑘𝜙)

𝑘

 (4.42) 

 
𝜃̈𝑛(𝜙) = −𝜔𝑏

2 [∑𝛼𝑛
(𝑘)𝑘2 cos(𝑘𝜙)

𝑘

+∑𝛽𝑛
(𝑘)𝑘2 sin(𝑘𝜙)

𝑘

] (4.43) 

 
𝜏1(𝜙) =

𝛼𝜏
(0)

2
+∑𝛼𝜏

(𝑘) cos(𝑘𝜙)

𝑘

+∑𝛽𝜏
(𝑘) sin(𝑘𝜙)

𝑘

 (4.44) 

where ϕ = ωbt is the phase parameter, ωb is the base frequency or first harmonic, and k is the 

harmonic number.  Superscript parentheses denote harmonic number (k) rather than exponents. 

Assume a steady-state condition where the root controller has damped out the natural 

response transients and forced the root to track the reference pitch profile θref from Eq. (2.1), shown 

as a harmonic series in Eq. (4.45).  Eqs. (4.46) convert the five pitch profile parameters into their 

corresponding harmonic coefficients using a half-p base frequency (ωb = Ω/2). 

 𝜃𝑟𝑒𝑓(𝑡) =
𝛼𝑟𝑒𝑓
(0)

2
+ 𝛼𝑟𝑒𝑓

(1) cos𝜙 + 𝛼𝑟𝑒𝑓
(1) sin𝜙 + 𝛼𝑟𝑒𝑓

(2) cos 2𝜙 + 𝛽𝑟𝑒𝑓
(2)
sin 2𝜙 (4.45) 

 
𝛼𝑟𝑒𝑓
(0) = −2𝛼𝑐𝑜 

𝛼𝑟𝑒𝑓
(1) = −𝛼ℎ𝑝 sin (

𝜙ℎ𝑝

2
+
𝜋

4
sign 𝛼ℎ𝑝) 

𝛼𝑟𝑒𝑓
(2) = −𝛼𝑐𝑦 sin 𝜙𝑐𝑦 

𝛼𝑟𝑒𝑓
(𝑘) = 0 for 𝑘 > 2 

𝜙 = 𝜔𝑏𝑡 = Ω𝑡/2 

𝛽𝑟𝑒𝑓
(1) = 𝛼ℎ𝑝 cos (

𝜙ℎ𝑝

2
+
𝜋

4
sign𝛼ℎ𝑝) 

𝛽𝑟𝑒𝑓
(2)
= 𝛼𝑐𝑦 cos 𝜙𝑐𝑦 

𝛽𝑟𝑒𝑓
(𝑘) = 0 for 𝑘 > 2 

(4.46) 

The system of N+1 equations represented by Eqs. (4.11) to (4.13) is underdetermined with 

N+2 unknowns τ1(ϕ), θ1(ϕ), … , θN+1(ϕ).  Applying the steady-state boundary condition that θ1(ϕ) 
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= θref(ϕ) remedies this, but the equations cannot simply be “unzipped” from root to tip since τ1(ϕ) 

is still unknown.  Therefore, solution by iteration is required.  I use Matlab’s fsolve function for 

multiple harmonics of interest and fzero for a single harmonic.  Either forward shooting 

(working from root to tip) or backward shooting (working from tip to root) will work, but I find 

backward shooting to converge in fewer iterations and to be more stable.  The basic method is: 

1. Select the base frequency ωb and harmonics of interest k.  It is neither possible nor desirable 

to calculate an infinite harmonic series, but most of the blade dynamics are captured with 

harmonics zero to four of half-p (i.e. k = {0, 1, 2, 3, 4} and ωb = Ω/2).  See section Chapter 

4.E.3 for justification. 

2. Make an initial estimate of the tip harmonic coefficients 𝛼𝑁+1
(𝑘)

 and 𝛽𝑁+1
(𝑘)

.  Convergence of the 

multi-harmonic solution with fsolve is sensitive to this estimate, but fzero for a single 

harmonic is not sensitive.  I use an initial estimate of 𝛼𝑁+1
(𝑘) = 𝛽𝑁+1

(𝑘) = 0 for the fzero 

function.  In solving for multiple harmonics, I seed fsolve with the results from a single-

harmonic run on fzero at the harmonic with the largest reference amplitude.  This solved the 

convergence sensitivity issue. 

3. Iterate to solve for the actual tip coefficients. 

a. For n = N+1,…, 2 

i. Substitute 𝛼𝑛
(𝑘)

 and 𝛽𝑛
(𝑘)

 of all harmonics of interest into Eqs. (4.42) and (4.43) to get 

𝜃𝑛(𝜙) and 𝜃̈𝑛(𝜙). 

ii. Substitute 𝜃𝑛(𝜙), 𝜃̈𝑛(𝜙), and 𝜃𝑛+1(𝜙) into Eqs. (4.12) or (4.13) and solve for 𝜃𝑛−1(𝜙): 
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𝜃𝑁(𝜙) = 𝜃𝑁+1 + atan [
1

𝐾𝑁
𝑐 (𝐽𝑁+1𝜃̈𝑁+1 +

𝐾𝑁+1
𝑔

2
sin 2𝜃𝑁+1)] ≡ 𝑓𝑁(𝜙) 

𝜃𝑛−1(𝜙) = 𝜃𝑛 + atan [
1

𝐾𝑛−1
𝑐 (𝐽𝑛𝜃̈𝑛 +

𝐾𝑛
𝑔

2
sin 2𝜃𝑛 − 𝐾𝑛

𝑐 tan(𝜃𝑛+1 − 𝜃𝑛))] ≡ 𝑓𝑛−1(𝜙) 

(4.47) 

iii. Solve for 𝛼𝑛−1
(𝑘)

 and 𝑏𝑛−1
(𝑘)

 for all harmonics of interest using numerical integration of:69 

 
𝛼𝑛−1
(𝑘) =

1

𝜋
∫ 𝑓𝑛−1(𝜙) cos(𝑘𝜙) 𝑑𝜙
2𝜋

0

 

𝛽𝑛−1
(𝑘) =

1

𝜋
∫ 𝑓𝑛−1(𝜙) sin(𝑘𝜙) 𝑑𝜙
2𝜋

0

 

(4.48) 

b. The error returned to the iterative solver is the difference between the calculated 𝛼1
(𝑘)

 and 

𝛽1
(𝑘)

 and the reference root excitation coefficients 𝛼𝑟𝑒𝑓
(𝑘)

 and 𝛽𝑟𝑒𝑓
(𝑘)

.  

4. Once the solver converges on the blade pitch harmonic coefficients, the root control torque 

harmonic coefficients are given by solving Eq. (4.11) for τ(ϕ):  

 
𝜏1(𝜙) = 𝐽1𝜃̈1 + 𝐾1

𝑔 1

2
sin 2𝜃1 − 𝐾1

𝑐 tan(𝜃2 − 𝜃1) ≡ 𝑓𝜏(𝜙) (4.49) 

then substituting 𝜃1(𝜙), 𝜃̈1(𝜙), and 𝜃2(𝜙) and solving for coefficients 𝛼𝜏
(𝑘)

 and 𝛽𝜏
(𝑘)

 with Eqs. 

(4.48). 

I have found the method above to be very stable and always converge on the solution 

corresponding to dynamic simulation results; however, this does not prove universal convergence 

or solution uniqueness.  This solution of the steady-state blade shape has several uses.  For 

example, section Chapter 4.E.2 will use the steady-state blade response at a single harmonic to 

improve blade design. Then, section Chapter 4.E.3 will use the root torque multi-harmonic 

response to augment a blade pitch control system with FF control.  Although not discussed here, 

this solution could also be incorporated into HGForce (Chapter 2.A) to optimize the pitch profile 

for maximum net spacecraft thrust or attitude control torque in a certain direction. 
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2. Structural Dynamics Concerns and Mitigation with Single Harmonic 

Solution 

This section will examine the blade’s steady-state root-to-tip response using the single 

frequency harmonic expansion and the HELIOS parameters.  Only showing the root-to-tip 

response of a single harmonic still captures the gross blade response while being much simpler to 

visualize.  Higher harmonics do not dominate the dynamics (shown later), and blade pitch is 

monotonic from root to tip below the second structural mode.  Figure 4.33 shows the steady-state 

response of the membrane ladder FEM found using the iterative procedure above for the three 

primary pitch profiles at a range of excitation amplitudes.  This confirms the unacceptable 

nonlinear blade response from Figure 4.31 that does not appear in the linearized system:  the 

amplitude of the tip response to half-p and cyclic abruptly jumps much higher than the root as the 

root amplitude increases.  This behavior in the steady state analytic solution confirms that the 

problem is in the natural dynamics and not with the root controller.  For comparison, these 

responses converge to the linear system response at zero root excitation amplitude in Figure 4.33. 

 
Figure 4.33:  Root-to-tip amplitude of the three pitch profiles using the membrane ladder FEM 

One can also use the steady-state solution to generate a two-dimensional, nonlinear 

describing function (DF) showing the blade’s response vs. excitation amplitude and frequency.  
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This DF is similar to that developed in Ref. 45, but their methodology is a quasi-linearization about 

a range of amplitudes.  Figure 4.34 shows the root to tip pitch amplitude DF with the half-p and 

cyclic curves corresponding to Figure 4.33 overlaid (black lines).  The first structural mode from 

the linear case (drawn at α1 = 0°) initially shifts down in frequency as the root amplitude increases, 

but the system retains a quasi-linear frequency response. At around 30°, a bifurcation of sorts 

occurs, and the system behavior becomes distinctly nonlinear.  The sharp jumps in cyclic and half-

p response of Figure 4.33 correspond to their intersection with this shifting first mode.  

 
Figure 4.34:  Root-to-tip amplitude DF using the membrane ladder FEM 

This nonlinear behavior is problematic, but there are several options for keeping the blade 

acceptably flat.  First, limit the root excitation amplitude, for example to <25° for cyclic and <75° 

for half-p.  This would limit operations to the much flatter area below and to the left of the first 

mode.  Unfortunately, cyclic amplitudes of 40° or higher are optimal for attitude and orbit control, 

so it is beneficial to increase the size of the flatter response area instead to encompass cyclic 

excitation up to at least 70°.  Another option is to implement some form of active blade tip control 

like the RCDs of Chapter 4.C.  This would add complexity and mass to the system, however, and 

decrease the original appeal of the heliogyro.  A third option is to alter the blade’s construction so 

as to increase the centrifugal stiffness relative to the gyroscopic and inertia terms. 
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Consider two possible variations on the blade construction: one to redirect the tension stress 

flow and one to increase blade tension.  In Chapter 4.A, the rope ladder FEM tripled the centrifugal 

stiffness over the membrane ladder by concentrating the tension along the leading and trailing 

edges.  This configuration could be approached with edge reinforcing or by “hanging” the blade 

on edge filaments separated by battens.  A thin strip of Kapton tape edge reinforcing on the 

HELIOS blade would only add about 50 g or 7% to the blade mass.  Increasing blade tension also 

increases the centrifugal stiffness, but the trick is to increase centrifugal stiffness relative to the 

gyroscopic and inertia terms.  All three terms contain Ω2, so no change in spin rate would achieve 

the desired outcome.  The next easiest way to increase tension is by adding mass to the blade tip.  

This would shift the mode frequencies up like tensioning a guitar string.  Any tip bar mass 

contributes to the mass moment of inertia J, so it would increase the gyroscopic and inertia terms 

proportionally with little net effect.  Therefore, the tip mass should be a point mass at the twist 

axis so as not to contribute to J. 

Figure 4.35 compares the effects of 50 g of edge reinforcing versus a 50 g tip point mass.  

The edge reinforcing has the largest effect by far, dramatically dropping the maximum tip response 

and smoothing out the abrupt jump in response for cyclic compared to Figure 4.33.  The half-p 

profile now has an acceptable response at all amplitudes.  Figure 4.36 gives the DF using both 

edge reinforcing and a tip mass simultaneously.  The offending mode is now shifted up in 

frequency for all amplitudes and its effects are much smoother at higher amplitudes.  The 

maximum cyclic response ratio is now only 1.8 at 90°, and the 1.25 point is pushed out to 58°, 

above the 42° optimal cyclic amplitude for lateral thrusting.  Because of these improvements, all 

simulations henceforth incorporate both these blade changes for enhanced flatness. 
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 a) 50g of edge reinforcing, rope ladder FEM b) 50g tip point mass, membrane ladder FEM 

Figure 4.35:  Root-to-tip amplitude of the three pitch profiles for different blade construction 

 
Figure 4.36:  Root-to-tip amplitude DF, rope ladder FEM, 50 g edge reinforcing, and 50 g tip point mass 

Of note in Figures 4.33 and 4.35, all cases with the same excitation frequency intersect the 

tip/root = 1 line at the same amplitude, regardless of changes in blade construction.  This point 

corresponds to the first mode of the root torque to root pitch DF, and it represents rigid body 

motion (a flat, untwisted blade) with zero torque input.  For the linearized blade, this occurs at 1 

cycle/rev (i.e. cyclic frequency).  Since this mode has no membrane deformation, its frequency is 

unaffected by blade construction, but it is affected by higher harmonics.  This mode is not to be 

confused with the first mode of the root pitch to tip pitch DF, for which the first mode shape is a 

large tip amplitude and a large root torque with zero root motion (corresponding to the first zero 
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of the root torque to root pitch DF).  Since there is a large twist deflection in this case, it is 

influenced by changes to the centrifugal stiffness, as was just shown.  MacNeal originally derived 

that this mode occurs at √2 = 1.4 cycles/rev for the linearized model of a featureless, uniform 

membrane (see Table 4.2).  This is close to the mode seen for the non-uniform (battened) nonlinear 

HELIOS blade in Figure 4.34.  One can calculate the “rigid body” amplitude a priori for the 

nonlinear blade by balancing terms from the equations of motion. 

Blade tip response to a root excitation is governed by the three terms of Eqs. (4.11) to 

(4.13):  inertia, gyroscopic, and centrifugal.  Below the first (rigid body) mode, the gyroscopic 

term is greater than the inertial term and the blade pitch amplitude decreases from root to tip, 

dubbed “wash-out”.  Above this mode, inertia dominates the gyroscopic term and the tip amplitude 

is higher than the root, dubbed “wash-in”.  Therefore, the rigid body mode frequency can be found 

by searching for the balance point between inertia and gyroscopic terms, a function of both 

excitation frequency and amplitude in the nonlinear system.  Start with the first harmonic solution 

of Eqs. (4.42) & (4.43) at the blade root for a given ωb ≠ 0: 

 

𝜃1(𝜙) = 𝛼1
(1) cos(𝜙) 

𝜃̈1(𝜙) = −𝜔𝑏
2𝛼1

(1) cos(𝜙) 

(4.50) 

and substitute into the root EOM of Eq. (4.11), assume that τ1 = 0 and θ1 = θ2 for flat plate motion, 

substitute Kg = JΩ2, and rearrange terms: 

 𝑔(𝜙, 𝛼1
(1)) ≡ (

𝜔𝑏
Ω
)
2

𝛼1
(1) cos(𝜙) −

1

2
sin[2𝛼1

(1) cos(𝜙)] (4.51) 

which only has an explicit, non-zero solution for 𝛼1
(1)

 when ωb = 0 (i.e. collective).  For ωb ≠ 0, g 

oscillates, and the flat blade solution is such that the first harmonic Fourier transform G is zero: 
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𝐺(𝑎1

(1)) ≡ ∫ 𝑔(𝜙) cos(𝜙) 𝑑𝜙
2𝜋

0

?
=0 (4.52) 

G can be thought of as a “wash factor” in that it is negative for wash-out and positive for wash-in.  

Furthermore, for all 𝛼1
(1)

 > 0 and ωb ≥ Ω, G is always positive, so excitation frequencies at or above 

cyclic always experience wash-in.  For frequencies in the interval ωb = (0, Ω), like half-p, the rigid 

body mode amplitude 𝛼1
(1)

 is found by iteration to set G = 0.  Table 4.7 summarizes these results. 

Table 4.7:  Single-harmonic solution for first rigid-body mode amplitude 

Pitch 

Profile 

𝝎

𝛀
 

g(ϕ) Rigid-body mode 

for 𝜶𝟏
(𝟏) ≥ 𝟎° 

Wash-out/-in 

(0°, 90°] 

Collective 0 sin[2𝛼1
(1)] 0°, 90°, 180°…  Wash-out < 90°  

Half-p 0.5 𝛼1
(1) cos(𝜙) − 2 sin[2𝛼1

(1) cos(𝜙)] 0°, 83.8° Wash-out < 83.8° 

Wash-in > 83.8° 

Cyclic 1 2𝛼1
(1) cos(𝜙) − sin[2𝛼1

(1) cos(𝜙)] 0° Wash-in > 0°  

This rigid-body mode is inherent in the single-harmonic dynamics, so no change in blade 

dimensions, mass distribution, or spin rate can change the amplitude/frequency combination at 

which it occurs; however, higher harmonic effects do play a factor for half-p.  The balance point 

for half-p still represents the transition from wash-out to wash-in, but higher harmonics prevent 

true flat-plate motion.  Figure 4.37 shows the half-p profile multi-harmonic solution for both the 

original and improved blades.  The third harmonic is the only noteworthy contributor to half-p 

response, and it does not affect the balance point amplitude for the original, membrane ladder FEM 

(compare Figures 4.37a and 4.33).  On the other hand, Figure 4.37b shows that higher harmonics 

combined with the improved blade design do shift the balance point slightly down to 72°, and 

more energy is transferred to the third harmonic.  The response for the improved blade is so much 

smoother, though, that this makes little difference in practical application, as discussed in the next 

section.  
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 a) Membrane ladder FEM b) 50 g edge reinforcing, 50 g tip point mass, 

  rope ladder FEM 

Figure 4.37:  Root to tip amplitude for the half-p pitch profile, multi-harmonic solution 

3. Root Control Law Performance with Multi-harmonic Solution 

Heliogyros actuate the blades at frequencies very near the first structural mode, and 

traditional methods of providing acceptable tracking and stability margin (to increase the closed 

loop damping)—such as structural stiffening or loop gain reduction at modal frequencies—are not 

feasible.  Lowered control gains improve settling time at the expense of root tracking because the 

root mechanical impedance reduction enables the root to absorb more modal energy.  FF 

compensation provides one workaround by allowing for lower feedback gains, leading to faster 

settling times, while maintaining acceptable tracking.  The FF signal for a root controller may be 

estimated using the harmonic expansion, but an infinite harmonic expansion is neither 

computationally possible nor necessary.  Fortunately, fast Fourier transforms (FFT) of dynamic 

simulations of the operational modes of Table 1.5 show that over 99% of the power spectral density 

is captured in the 0th to 4th harmonic of half-p {0, 0.5, 1, 1.5, 2 cycles per rev}.  This leads to the 

root control law: 

𝜏1 = 𝐾𝑃(𝜃𝑟𝑒𝑓 − 𝜃1) + 𝐾𝐷(𝜃̇𝑟𝑒𝑓 − 𝜃̇1) +
𝛼𝜏
(0)

2
+∑𝛼𝜏

(𝑘) cos(𝑘𝜙)

4

𝑘=1

+∑𝛽𝜏
(𝑘) sin(𝑘𝜙)

4

𝑘=1

 (4.53) 
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Tracking without FF is especially problematic for collective profiles due to the constant 

restoring gyroscopic torque inducing wash-out.  Consider the simulations in Figure 4.38 of a 

combined 38° collective & 20° cyclic pitch profile for attitude control during blade deployment 

(mode 1 in Table 1.5).  Figure 4.38a shows the proportional-derivative (PD) controller 

performance with low gains optimized for rapid settling time, which result in poor tracking of the 

reference.  On the other hand, Figure 4.38b uses the high gains required for acceptable tracking, 

but it takes four times longer to settle.  As with the linear analysis, settling time is defined as the 

point at which the resulting SRP force (averaged over one revolution) changes <10% from one 

revolution to the next. 

  
 a) Low PD gains (0.002 Nm/rad & 0.01 Nms/rad) b) High PD gains (0.02 Nm/rad & 0.1 Nms/rad) 

Figure 4.38:  Dynamic simulation of rope ladder FEM with 50 g edge reinforcing, 50 g tip point mass, a PD 

root pitch controller, and 38° collective & 20° cyclic reference 

Another problem is that in neither case is the blade “flat equivalent,” defined as the time it 

takes for the net SRP force and moment components on the spacecraft to approach within 10% of 

the forces and moments generated by an ideal, flat blade with a given pitch profile.  This metric is 

more relevant than settling time because it answers the question, “Is the flat blade assumption valid 

for attitude and trajectory analyses?”  Herein, I manually adjust the root pitch profile so that the 

net effect of the flexible blade becomes flat-equivalent to the original profile requested by the 

attitude control law.  Ideally, the attitude control tactics of Chapter 2 would incorporate the steady-
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state harmonic expansion solution, allowing them to request the optimal root profile to achieve the 

desired effect with flexible blades.  As discussed in Chapter 2, the inverse mapping from blade 

pitch profile to the resulting total-spacecraft force and moment vectors is challenging even with 

the flat blade assumption.  It is likely that steady-state harmonic inverse solutions can be found 

with a similar approach, promising increased accuracy over a flat blade assumption.  Furthermore, 

the harmonic expansion is simpler to implement for real-time attitude and trajectory control than 

the use of a full dynamic simulation approach, which would require iterative correction of 

reference pitch profiles based on settled simulation behavior. 

Combining all of the measures discussed in this sub-chapter (edge reinforcing, tip mass, 

low PD gains, FF compensation, and root profile adjustment) yields a system that rapidly settles 

and generally approximates a flat blade within 10%.  Figure 4.39 incorporates both the FF 

compensation and the root profile adjustment for operational mode 1 of Table 1.5.  The flexible-

blade, root pitch profile becomes 43° collective & 17° cyclic, which generates the forces and 

moments equivalent to a flat blade profile of 38° collective & 20° cyclic within 1.6 revolutions.  

Notice the excellent tracking of the root to the reference signal and rapid settling time in 

Figure 4.39a with the PDFF controller.  Figure 4.39b shows the FFT of the blade tip for the last 

five revolutions of the 10 rev simulation to find the harmonic frequencies excited by the given root 

profile.  I set the simulation time step so that the FFT has a frequency resolution of 1/6 cycles/rev.  

Note that the zero-frequency FFT coefficient must be halved per Eq. (4.46) to equal the collective 

pitch.  It is apparent in Figure 4.39b that the blade’s natural response has decayed, since only 

harmonics of the forced response remain.  This FFT is useful for validating the harmonic expansion 

methodology by direct comparison with the expansion’s tip coefficients. 
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 a) Dynamic simulation b) FFT of tip response for the last five revolutions 

Figure 4.39:  Rope ladder FEM with 50 g edge reinforcing, 50 g tip point mass, a PDFF root pitch controller, 

low PD gains, and 43° collective & 17° cyclic reference 

Table 4.8 gives the performance results and validation for all the operational modes of 

Table 1.5, each of which settles within three revolutions (column 5).  The flexible blade profiles 

(column 3) required to achieve flat blade equivalence (column 4) are usually only a few degrees 

away from the desired flat blade profile (column 2).  The difference adjusts for wash-out/-in so 

that the controller usually achieves the desired forces and moments in a few revolutions.  The blade 

settles quickly enough to actuate several pitch profiles per orbit, even in low Earth orbit (LEO).  

The last three columns list the dominant harmonics at the blade tip in each mode (column 6), the 

FFT coefficients measured after the blade had settled in a dynamic simulation (column 7), and the 

harmonic expansion coefficient magnitude calculated using the analytical procedure of Chapter 

4.E.1 (last column).  These columns validate the harmonic expansion methodology, as the 

harmonic coefficients are in near-perfect agreement with the FFT from the dynamic simulation.  

Furthermore, it justifies the limitation of the expansion to harmonic numbers 0 to 4 when exciting 

the blade at up to two frequencies (i.e. half-p and cyclic), as no operational mode significantly 

excites frequencies above 2 cycles/rev (k = 4). 
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Table 4.8:  PDFF root controller performance at the common operational modes of Table 1.5 

# 

Flat 

Blade 

Profile 

Flexible 

Blade 

Profile 

Flat Blade 

Equivalence 

(rev) 

Settling 

Time 

(rev) k* 

Tip 

FFT 

(deg)† 

|𝜶𝒕𝒊𝒑
(𝒌), 𝜷𝒕𝒊𝒑

(𝒌) | 

(deg)† 

1 38° collective 

20° cyclic 

43° collective 

17° cyclic 

Force:  1.4 

Moment:  1.6 

1.3 0 

2 

4 

32.4 

23.1 

6.1 

32.4 

23.1 

6.1 

2 70° half-p 70° half-p 

 

F:  No, 20% 

higher 

M:  No, 23% 

higher 

1.8 1 

3 

68.4 

22.4 

68.1 

22.0 

3a 40° cyclic 37° cyclic F:  1.5 

M:  3.7 

1.7 2 41.2 41.3 

3b 90° collective 

60° cyclic 

90° collective 

34° cyclic 

F:  1.9 

M:  3.1 

2.2 0 

2 

90.0 

78.6 

90.0 

79.1 

4/ 

5a/ 

5b 

60° half-p 

-17° cyclic 

67° half-p 

-10° cyclic 

F:  2.6 

M:  No, 23% 

higher 

1.8 0 

1 

2 

3 

4 

3.0 

63.9 

15.8 

18.0 

9.7 

2.9 

63.8 

15.7 

17.7 

9.6 

5b 40° collective 

52° cyclic 

45° collective 

40° cyclic 

F:  No, 27% 

lower 

M:  No, 25% 

lower  

1.3 0 

2 

4 

41.9 

62.0 

22.0 

42.2 

62.4 

21.8 

6 70° half-p 

52° cyclic 

56° half-p 

35° cyclic 

F:  2.2 

M:  3.6 

2.3 0 

1 

2 

3 

4 

6.1 

58.4 

57.3 

19.1 

18.6 

6.0 

58.4 

57.5 

18.7 

18.7 
*These are the harmonics of half-p (ωb = 0.5Ω) that capture >99.5% of the tip response’s power spectrum. 
†Coefficients of the 0th harmonic have been halved per Eq. (4.46) for easy comparison with collective input. 

The higher harmonics can either help or hurt the net force and moment generated.  The 

only mode where the flexible blade cannot meet or exceed the flat blade force and moment 

performance is mode 5b (rapid slewing) with collective & cyclic.  Fortunately, this mode has an 

alternative profile using half-p & cyclic that outperforms the flat blade.  Cyclic by itself (mode 3) 

does not excite higher harmonics, but collective & cyclic (modes 1 & 5b) always excites k = 4, the 

2nd harmonic of cyclic.  This harmonic is apparent in Figure 4.39a by observing that the blade tip 
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spends more time at high pitch angles where less SRP is reflected and vice versa at low sun angles, 

thus lowering the net force.  On the other hand, the half-p profile (modes 2, 4 & 6) always excites 

its 3rd harmonic, which generally improves the performance of this profile.  Looking at the 

simulation of mode 4 in Figure 4.40a, one can see the 3rd harmonic causes the blade to spend more 

time at low pitch and less at high pitch, thus increasing the available SRP thrust.  The spacecraft’s 

high sun angle during emergency attitude recovery (mode 6) lessens this effect.  As might be 

expected with two excitation frequencies, all five harmonics are only significant in half-p & cyclic 

profiles (modes 4 & 6).  The FFT in Figure 4.40b confirms that these five harmonics and no others 

are significant for approximating the steady-state dynamics. 

  
 a) Dynamic simulation b) FFT of tip response for the last five revolutions 

Figure 4.40:  Rope ladder FEM with 50 g edge reinforcing, 50 g tip point mass, a PDFF root pitch controller, 

low PD gains, and 67° half-p & 10° cyclic reference 

F. Chapter Summary and Recommendations 

A frequency domain analysis reveals the essential nature of feedback control of blade twist 

using a root actuator: a blade with zero material damping cannot be stabilized by a root control 

system with finite bandwidth.  Fortunately, the material damping required is extremely small 

(<0.001% at the second mode).  Additionally, the first mode represents rigid body motion with 

this free-free system using a torque-source root motor.  This mode always has a response 

magnitude greater than one and must be phase-stabilized.  This requires a controller bandwidth of 
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at least 1 cycle/rev (0.0167 Hz).  A detailed examination of the tradeoff between material damping 

and controller bandwidth reveals that the closed-loop frequency response peaking can be kept 

under 5dB at the root and 10dB at the tip with bandwidths of 30 cycles/rev (0.5 Hz) even at 

extremely small levels of blade material damping (<0.001% at the second mode).  The system 

time-constants are so long that even very small controller bandwidths (when measured in Hertz) 

yield an acceptable dynamic response. 

Should further analysis prove that additional damping is necessary, I evaluate a reflectivity 

control approach similar to that pioneered with the JAXA IKAROS solar sail as a means of 

controlling dynamic torsional responses at the tip caused by root pitch inputs.  I found IKAROS-

like RCDs capable of attenuating blade torsional response, but they almost double the spacecraft 

mass so are impractical.  Torsional control performance could be improved over 200% by a 

combination of halving RCD thickness and doubling the difference in on/off reflectivity.  

Unfortunately, single-sensor configurations for feedback destabilize the mid-frequency modes.  A 

distributed sensing system solved this problem, but this arrangement may be impractical. 

I also conducted experiments to determine the frequency response of a hanging membrane 

blade in a vacuum chamber, yielding three key results.  First, they quantified the coupling between 

blade twist and flap motion.  Some damping of bending motion may be required to mitigate this 

problem.  Second, the experiments validated the membrane ladder FEM.  In fact, the first four 

experimental and theoretical mode frequencies agreed within 8.4% for twist motion and 4.5% 

flapwise bending.  Lastly, the experiment attempted to estimate the magnitude and character of the 

material damping, but the damping ratios were much higher than expected.  The first mode 

experienced 5.1% damping in flap and 17.5% in twist.  Some of that damping was due to viscous 

effects still present in the evacuated test chamber, although it is difficult to say how much from 
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these experiments.  Further testing at lower pressures is required to isolate the membrane’s material 

damping.  The damping ratios decreased with frequency in a roughly linear fashion, which is 

opposite the behavior of the current damping model in the FEM.  Other methods of modeling 

damping should be investigated. 

Lastly, this chapter investigated the nonlinear blade twist dynamics and control.  I first 

solved the EOM using a Fourier series harmonic expansion for the blade’s steady-state response.  

I used this steady-state solution to explore some dynamic concerns and to improve the blade pitch 

controller.  The heliogyro blade is so flexible that normal operations excite the blade very near the 

first structural twist mode, and settling time goals preclude traditional controller gain stabilization.  

Furthermore, spacecraft acceleration goals preclude the addition of massive structural stiffening.  

Unfortunately, this can lead to an unacceptable twist response in membrane blades.  For example, 

the blade can twist completely around under cyclic excitation of as little as 35° root amplitude.  

Therefore, it is necessary to increase blade stiffness by enhancing the centrifugal stiffness arising 

from blade tension.  I found two blade construction alterations to improve centrifugal stiffness 

with marginal mass penalty:  a point mass at the blade tip and directing the tension along the blade 

edges (e.g. by edge reinforcement).  The latter was found to be more mass-efficient.  With these 

modifications, additional blade tip control has not been found necessary for reasonable tip/root 

pitch ratios (using the blade twist-only dynamics). 

Feed-forward greatly improves blade root controller tracking and settling time 

performance, and the steady-state solution by harmonic expansion is an effective way to calculate 

the nonlinear (amplitude-dependent) feed-forward coefficients.  Half-p and cyclic pitch profiles 

excited harmonics up to 2 cycles/rev with less than 0.5% of the steady-state response’s power 

spectrum above this frequency.  Therefore, incorporating frequencies beyond this into the feed-
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forward signal is unnecessary.  A PDFF control law settles blade motion within 3 revolutions, 

which is only 3 minutes given a nominal 1 RPM spin rate.  Therefore, assuming instantaneous 

changes to the blade pitch profile would be a reasonable simplification for preliminary attitude and 

trajectory analyses.  Even in LEO, where the orbit period is a relatively short 100 minutes, the 

heliogyro could vary the pitch profile effectively many times per orbit.  The flat-blade assumption 

is generally reasonable for preliminary attitude and trajectory analyses, but higher harmonics 

arising naturally can either increase or decrease propulsion and attitude control performance by as 

much as 25%. 
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CHAPTER 5. CONCLUSION 

A. Contributions to the Field 

Heliogyros have the potential to significantly enhance and enable our exploration of the 

solar system.  I have shown how they can generally double acceleration performance over most 

well-developed solar sail architectures for near- and mid-term missions.  The heliogyro truly 

surpasses other architectures for far-term missions due to its superior scalability to vast areas.  

These significant benefits come at the cost of increased complexity in the attitude, orbital, and 

structural dynamics.  I have investigated the most significant control issues at each of these scales 

and developed methods to estimate performance along with several control approaches which 

should prove useful to future mission designers. 

1. Attitude Control Tactics 

I performed the first detailed investigation into the use of heliogyro blade pitch profiles to 

generate attitude control moments from all orientations.  I quantified the change in attitude control 

moments with varying sun angle for a given pitch profile.  Then, I determined that a cyclic profile 

would correct for these changes and restore the desired force and moment direction.  Significantly, 

I developed three tactics optimized to perform attitude stabilization concurrently with one of three 

other common goals:  controlling the heliogyro spin rate, changing the sun angle by spin axis 

precession, or generating thrust perpendicular to the sun line.  These three tactics each combine 

two canonical pitch profiles, cover all of the most common mission operational modes, and can 

perform each of the other two functions to a lesser degree. 

I quantified each of these tactics’ maximum ability to create attitude control moments at 

all orientations, i.e. their control moment authority.  Startlingly, the heliogyro was found capable 

of achieving and recovering from any orientation as long as the blades are permitted to be 
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illuminated from either side.  Allowing the blades to be illuminated on both sides turned out to be 

useful in many circumstances, so performance expectations will need to be cut should other 

considerations prevent this.  The control moment authority is useful for estimating the heliogyro’s 

maximum slew rate, and therefore which trajectories it is capable of following.  I also compared 

the tactics’ slew rates and lateral thrust capability to determine which tactic is preferred for which 

mission operational mode. 

Lastly, I developed a methodology for determining the pitch profile required to achieve a 

desired attitude control moment.  This represents the inverse of the forward mapping from a given 

pitch profile to the resulting forces and moments, which is highly nonlinear with many local 

minima.  Through visual inspection and linear regression, I determined the basic topology of this 

mapping that I then used as an approximate inverse mapping.  I also came up with a methodology 

for determining the exact inverse mapping with a gradient descent optimizer.  This work forms the 

basis of an operational attitude control system that automatically varies the blade pitch to provide 

a desired moment to control attitude. 

2. Orbital Performance for Earth Escape Strategies 

Earth escape is the most difficult regime near-term solar sails will face because it requires 

that the thrust vector be slewed at orbit rates.  I implemented a metric, dubbed the “escape factor,” 

for quantifying a given escape strategy’s performance without performing full orbital dynamics 

simulations.  This is the first application of this metric to heliogyros, the first direct comparison of 

heliogyro and kite sail escape performance, and the first to account for the incumbent reduction in 

thrust when attempting to slew the heliogyro 180° per orbit as required by the ideal, flat sail 

trajectories.  I also developed a new escape strategy specific to the heliogyro that maximized thrust 

along the velocity vector and improved upon canonical heliogyro strategies by up to 17%.  Finally, 
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I validated these performance estimates by deriving a method of calculating the escape factor from 

simulation results and then simulating several of the strategies.  This method of measuring the 

escape factor from simulation results is generally applicable to low-thrust trajectories, so it could 

be used to compare a variety of architectures’ performance.  This work showed that the heliogyro 

is 87% as capable as the ideal, flat solar sail of the same characteristic acceleration.  Since the 

heliogyro can usually double the characteristic acceleration versus a kite sail of the same mass, the 

performance benefits of the heliogyro, even in this most difficult regime, are clear. 

3. Structural Dynamics and Control of Blade Twist 

I spent the bulk of my efforts investigating blade twist dynamics, as this poses the biggest 

concern into heliogyro feasibility.  To do this, I developed a new finite element model of heliogyro 

blade torsional dynamics called the membrane ladder.  This model has fewer degrees of freedom 

than commercial FEA software, but it is useful for gaining insight into blade dynamics, allows for 

closed loop feedback control, is more accessible to analytical analysis, and requires orders of 

magnitude less computer power.  The membrane ladder improved upon previous heliogyro blade 

twist models9,12,51,53 by allowing for discrete blade masses, such as battens, and multiple tension 

stress distributions. 

The linearized membrane ladder is easily formulated in state space, making it accessible to 

classical linear controls analysis.  This thesis was the first development of a closed-loop root 

controller employing feed forward for improved tracking and settling times.  It also was the first 

investigation of the stability of a finite bandwidth controller and its relationship to the blade’s 

material damping.  I found that controller bandwidths of 30 cycles/rev (0.5 Hz for HELIOS) should 

provide sufficient stability margin for all reasonable material damping levels. 
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I performed the first investigation into the potential for using IKAROS’ novel reflectivity 

control as a blade tip actuator.  Root control appears sufficient thus far, but other factors, such as 

coupling of blade motion, may necessitate tip control.  I found the IKAROS’ technology to be 

impractical, but it could be useful should a halving of thickness and doubling of the reflectivity 

change be possible.  The reflectivity control system would be distributed over an area, so non-

colocation with a single sensor could destabilize some modes.  I found that distributed sensing 

would solve this problem, but this may be impractical. 

The structural dynamics experiments on a hanging heliogyro blade at 1 gravity were the 

first experimental validation of the heliogyro blade models and the first estimation of the blade’s 

material damping.  The experimental FRFs agreed very well with the membrane ladder model out 

to the fifth structural mode.  The measured damping was much higher than expected at a few 

percent, so further experiments at pressures lower than 50 mTorr are recommended.  Lastly, some 

coupling between flap and twist was identified, but it did not significantly alter mode frequencies 

and should be damped by the root control system. 

While linear stability is a prerequisite for nonlinear stability, nonlinear effects were found 

to significantly worsen the blade’s twist response at moderate excitation amplitudes.  This was the 

first investigation of heliogyro blade nonlinear dynamics, and I developed quantitative predictions 

of the steady-state response to a given root excitation.  By looking at this steady-state solution, I 

determined that the cause is a down-shift in the first mode frequency with excitation amplitude.  I 

identified increasing the centrifugal stiffness as the primary means of increasing the mode 

frequencies, thereby moderating and flattening the blade’s twist response.  The most effective ways 

to do this are by edge reinforcing to carry the blade stress on the leading and trailing edges and 

adding a point mass to the blade tip.  I also identified frequency coupling that excited higher 
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harmonics, but that this response is 99.5% confined to only five frequencies:  0 (collective), 0.5 

(half-p), 1 (cyclic), 1.5 (3rd harmonic of half-p), and 2 (2nd harmonic of cyclic) cycles/rev.  The 

steady-state solution was also effective for providing the root motor controller feed-forward signal 

for enhanced tracking and faster settling times.  In fact, the blade settled within two to three 

minutes for all expected blade pitch profiles.  Furthermore, with the enhanced centrifugal 

stiffening, the blade generally approximated the SRP forces and moments of a flat blade, making 

this a reasonable assumption for preliminary attitude and orbital dynamics analysis.  Surprisingly, 

the naturally arising third harmonic of half-p actually improved force and moment performance 

by as much as 25%. 

B. Future Work 

The HGForce algorithm to map pitch profiles to their resulting forces and moments 

of Chapter 2 currently assumes flat blades.  This algorithm should be improved by incorporating 

the nonlinear, multi-harmonic, steady-state solution of blade shape from Chapter 4.E.1.  

Furthermore, the blade root pitch profile of Eq. (2.1) should include two more terms (for a total of 

nine pitch profile parameters) to capture all five of the principal flexible blade harmonic 

frequencies and phases.  These two modifications would ensure that the inverse mapping is 

returning the pitch profile for a flexible blade to optimally meet the desired force and moment 

vectors.  The mapping inversion of HGForce for the three attitude control tactics presented here 

is limited to three inputs and the three moment component outputs.  This could be expanded into 

a more general optimization of the total force and moment vector for any giving pitch profile.  As 

an intermediate step, it would be beneficial to investigate how to optimally create a force in any 

given direction from any orientation without inducing attitude moments. 
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I have not found any orbit simulation and trajectory optimization software that adequately 

accounts for the heliogyros’ unique capabilities and limitations.  This includes JPL’s Mystic & 

Malto, MSFC’s Solar Sail Spaceflight Simulation Software (S5), Princeton Satellite Systems’ 

Solar Sail Toolkit for Matlab, JSC’s Copernicus, and Analytical Graphics Incorporated’s (AGI) 

Systems Toolkit (STK).  In particular, no system accounts for the reduction in thrust that occurs 

when a heliogyro diverts some SRP to generate attitude control moments for slewing.  Short of 

building a tool from scratch, one option is to write a custom force model that integrates with 

currently available software and is called during each integration step.  The open development of 

general solar sail trajectory optimization tools that are versatile, customizable, powerful, and user-

friendly (i.e. incorporates a GUI) is another area of investment greatly beneficial to all solar sailors. 

I assume blade pitch is controlled by a torque-source root motor in this thesis, but the 

torques required are extremely small (<1 μNm for HELIOS).  Such small torques would generally 

be overwhelmed by friction forces in conventional electromagnetic motors.  Therefore, detailed 

root actuation mechanical design is needed that takes friction into account.  The motor would either 

need to significantly reduce friction or the control system would have to accommodate a geared, 

position source root motor with high impedance.  The latter would require measurement and 

feedback of a parameter other than root pitch, which raises other measurement and non-colocation 

difficulties. 

Lastly, structural dynamics simulations will never be fully convincing until they are 

coupled with attitude dynamics in a total spacecraft model.  This simulation would need to be 

nonlinear, have many nodes per blade, allow three DOF motion at all nodes, incorporate 

experimental measurements of material elasticity & damping, incorporate a realistic SRP model, 

and implement a blade pitch controller nested within an attitude control law in a free-floating, 
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unconstrained, inertial reference frame.  Such a simulation would address concerns about the 

inability to ground test. 

These investigations are key to further understanding and optimizing the heliogyro, but I 

do not foresee them uncovering any show stoppers to implementing the heliogyro.  I have 

investigated key concerns with practical heliogyro operations and not found any insurmountable 

roadblocks nor any recommended design modifications that would negate the substantial 

performance gains afforded by this architecture. 
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APPENDIX A. COPERNICUS SETTINGS TO SIMULATE A SOLAR SAIL 

These settings are under the Segment Definition > Maneuvers > Finite Burn tab.  First, set 

the thrust magnitude in the Finite Burn Engine tab by selecting an engine control that includes 

Power to activate SEP.  I use Cev & Power.  Power and mass flow rate relate to thrust & Cev by:55 

 
𝑃𝑜𝑤𝑒𝑟 (𝑊) =

1

2
𝐶𝑒𝑣(𝑘𝑚 𝑠⁄ ) ⋅ 1000 ⋅ 𝑇ℎ𝑟𝑢𝑠𝑡(𝑁) (A.1) 

 
𝑚̇(𝑘𝑔) =

𝑇ℎ𝑟𝑢𝑠𝑡(𝑁)

1000 ⋅ 𝐶𝑒𝑣(𝑘𝑚 𝑠⁄ )
 (A.2) 

A solar sail has no mass flow rate, so I set Cev to an arbitrarily high 1e9 km/s.  Calculate the thrust 

and power externally for a sail at 1 AU, as Copernicus does not have a solar sail module.  Once an 

engine control with power is selected, activate SEP under Options > Power source > Solar Electric.  

This will automatically vary the thrust magnitude with distance from the sun.  One can also select 

a shadowing model, if desired, to turn the thrust off in eclipse. 

Next, set the thrust direction in the SOC FB Maneuver tab.  Select a controls frame that 

points the thrust vector in the desired direction.  For Earth escape, I choose the LVLH 2-body 

rotating frame with the sun as the main body (makes s the z-axis) and the Earth as the Aux body 

(makes l̂ the x-axis).  A right ascension (Alpha) of 0° points thrust along the velocity vector, and 

declination (Beta) is the compliment of the thrust cone angle. 

If the thrust magnitude and thrust cone angle vary continuously (e.g. OP s|| 0τ), I 

approximate the changes as piecewise linear.  I calculate the thrust and declination externally to 

Copernicus from the data in Figure 3.9.  I then perform a least squares fit to get the coefficients 

for input into Copernicus.  The fits returned R2 of 99.7% for declination and 97.6% for thrust 

magnitude, so the simulations are accurately representing the solar sail thrust. 
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APPENDIX B. ACRONYM GLOSSARY 

AU astronomical unit, 1 AU = 1.496e8 km, the average Earth-Sun distance 

CM center of mass 

CMA attitude control moment authority 

CP center of pressure 

DCM direction cosine matrix 

DOF degrees of freedom 

EOM equations of motion 

FEA finite element analysis 

FEM finite element model 

FF feed forward 

FFT fast Fourier transform 

GEO geosynchronous Earth orbit 

GUI graphical user interface 

HELIOS High-Performance, Enabling, Low-Cost, Innovative, Operational Solar Sail 

IKAROS Interplanetary Kite-craft Accelerated by Radiation of the Sun 

JAXA Japan Aerospace Exploration Agency 

JPL NASA Jet Propulsion Laboratory 

LaRC NASA Langley Research Center 

LCD liquid crystal device 

LDV laser Doppler vibrometer 

LEO low Earth orbit 

LTI linear, time-invariant 
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MIT Massachusetts Institute of Technology 

MSFC NASA Marshall Space Flight Center 

PD proportional/derivative 

PDFF proportional/derivative/feed forward 

PV photovoltaic 

RAAN right ascension of the ascending node 

RCD reflectivity control device 

RMS root mean squared 

SOCIT System Observability Controllability Identification Toolbox 

SOI sphere of influence 

SPO solar polar orbiter 

SRP solar radiation pressure 

SSO Sun-synchronous orbit 
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